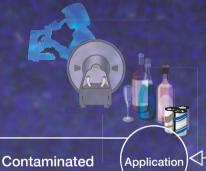


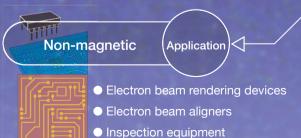
Bearings, Ball Screws and NSK Linear Guides, for Special Environments

Bearings, Ball Screws, and NSK Linear Guides for Special Environments

The SPACEA™ Series—responding to extreme, special environments


NSK's SPACEA™ Series adapts the vacuum lubrication, material, and thin-film technologies for advanced applications. Our wide array of bearings, ball screws, and NSK Linear Guide™ products offer high functionality and unmatched quality in special environments. As such, the SPACEA Series stands up to tough operation requirements in vacuum, corrosive, cleanroom, high-temperature, nonmagnetic, and contaminated environments.

SPACEA


The SPACEA Series is optimized for a variety of advanced applications, including semiconductor, flat panel display, and hard disk production; food processing machinery; pharmaceutical/cosmetics production; and ceramics, chemistry, and optics equipment.

Sanitary (Application) <

- Food processing machinery
- Medical instruments

- Food processing machinery
- Woodworking machinery
- Tire buffs
- Welding lines
- Graphite processing machinery
- Laser machinery

Application Vacuum

- Production machinery for semiconductors, FPDs, and hard disks
- Vacuum evaporation devices
- Vacuum robots
- Space exploration equipment

- Solutions that excel in diverse operating conditions and a broad range of applications.

Table of Contents

Table of Contents
SPACEA™ Series P2–7
Global Network ·····P4–5
Research and Development·····P6–7
SPACEA™ Bearings ······ A1–A66
Table of Contents of SPACEA™ Bearings······· A1–A2
Inventory ————————————————————————————————————
Selection Guide······ A5–A8
Dimensions, Accuracy, and Availability
Product Information
Applications of SPACEA™ Series Bearings ······· A61–A66
SPACEA™ Series Ball Screws and NSK Linear Guides····· B1–B34
Table of Contents of SPACEA™ Series Ball Screws and NSK Linear Guides
Inventory ····· B3–B4
Selection Guide······B5–B6
Types and SpecificationsB7-B8
Dimensions and Availability
Product Information ·······B13–B32
Applications of SPACEA™ Series Ball Screws and NSK Linear Guides······ B33–B34
AppendicesC1-C10
Specification Inquiry

Application

Application

High-temperature

Corrosive

Cleanroom

Cleaning equipment for

and hard disks

 Chemical plants Plating facilities Etching equipment

Conveyors

Application

semiconductors, FPDs, PDPs

Food processing machinery

 Transporters in clean rooms Production machinery for semiconductors and FPDs panels, and conveyors in

Hard disk production

- Kilns
- High-temperature conveyors

machinery

Solar cell produce

- Semiconductor production machinery
- Kiln cars

machinery

NSK Global Network

NSK's global network is key to our ability to develop innovative products that incorporate the latest technologies.

Our network connects each sales branch, distribution center, production facility, and technology center and enables us to gather the latest information from each location.

Data is instantly accessible to every part of the network, resulting in products of the highest quality.

Our global system also receives and processes orders, ships products, and provides technical support.

By leveraging our resources, NSK quickly responds to diverse challenges, no matter how complex.

NSK's global network means excellent products and superior customer service.

NSK's communication system links the major markets of the world in Europe, Asia, Japan, and the Americas. We use this highly developed system to share information on changes and trends in each market in real time. As a result, we can react quickly to meet changing customer needs, supplying optimized, high-quality products. Our global network makes NSK a truly global company. We are able to transcend borders and other restrictions to meet the needs of our customers around the globe.

Headquarters.....6 Plants.....66 Sales offices.....106 ■ Technical offices.....22

EUROPE/AFRICA				
U.K.	1	4	2	1
Germany		2	4	2
Denmark				1
France			1	
Italy			1	
Holland			1	
Spain			1	
Poland		4	3	1
Turkey			1	
U.A.E.			1	
South Africa			1	
Morocco		1		

ASIA/OCEANIA				
Singapore	1		1	
Indonesia		3	2	
Thailand		2	5	1
Malaysia		2	3	
Philippines			1	
Vietnam			2	
India	1	5	7	2
Australia			1	
New Zealand			1	
Japan	1	20	30	7
China	1	11	19	1
South Korea		2	2	1
Taiwan			3	

THE AMERICAS				
U.S.A.	1	7	7	4
Canada			2	
Mexico		2	1	
Brazil		1	1	1
Peru			1	
Argentina			1	

March 2022

NSK Research and Development

Extensive commitment to research and development through a network of four bases in the United States, Europe, and Asia, with Japan as the core.

SPACEA™ Series bearings, ball screws, and NSK Linear Guides are technology-driven products that continue to evolve, supported by advanced technologies developed in the NSK R&D centers. Lubrication, materials, and evaluation technologies are integrated to create new SPACEA™ products.

Lubrication technology

Cleanroom and vacuum lubricant DFO Cleanroom greases: LG2, LGU Special solid lubricant Solid lubricant for vacuum/high temperature

Materials technology

Highly corrosion-resistant, long-life stainless steel: ES1 Highly corrosion-resistant, high hardness stainless steel: ESZ Fiber-reinforced, highly corrosion-resistant fluororesin materials

Highly corrosion-resistant ceramic materials

Evaluation technology

In-vacuo rotation/linear tester Clean environment rotation/linear tester Corrosive environment bearing endurance tester Dust-contaminated environment linear tester

Bearings for corrosive environments

SPACEA Series Bearings: Functionality and Quality Tailored for Special Environments

Through a diverse lineup committed to functionality and quality, SPACEA Series bearings suit a wide range of conditions, requirements, and environments.

Please see Pages A5-A8 for recommended bearings for specific applications.

SPACEA™ Bearings

A	Inventory ·····	A3–A4
B	Selection Guide	····· A5–A8
C	Dimensions, Accuracy, and Availability	A9–A28
D	Specifications, Operating Instructions, and Technical Data	
	1. Stainless Steel Bearings	A29–A30
	2. Stainless Steel Angular Contact Ball Bearings	A31
	3. Stainless Steel Self-Aligning Ball Bearings	A32
	4. Molded-Oil™ Bearings (For corrosive environments, For sanitary environments) ·······	A33–A34
	5. Hybrid Bearings	A35–A36
	6. Corrosion-Resistant Coated Bearings	A37–A38
	7. ESZ Bearings	A39–A40
	8. All-Ceramic Bearings	····· A41–A42
	9. Aqua-Bearing [™] ·····	····· A43–A44
	10. LG2/LGU Grease-Packed Bearings ·····	A45–A46
	11. FG9 Fluorine Grease-Packed Bearings	A47–A48
	12. E-DFO Bearings, V-DFO Bearings	····· A49–A50
	13. KPM Grease-Packed Bearings·····	A51–A52
	14. YS Bearings with Spacer Joints ····	A53–A54
	15. SJ Bearings	A55–A56
	16. Food Grade Grease-Packed Bearings ·····	A57–A58
	17. Molded-Oil™ Bearings (For Contaminated Environments) ·····	A59–A60
E	Applications for SPACEA™ Series Bearings ·······	A61–A66

Lineup

NSK's SPACEA[™] Series bearings for special environments are optimized for operating environments that are too severe for ordinary bearings, such as production machinery for semiconductors, flat panel displays (FPDs), hard disks; food processing machinery; and equipment for pharmaceutical, cosmetics, ceramics, chemistry, and optics.

Sanitary environments

For food processing machinery

- · Food grade grease-packed bearings
- · Molded-Oil™ bearings with food grade lubricant

Food grade grease-packed bearings

Vacuum environments

Cleanroom

- · FG9 fluorine grease-packed bearings
- · DFO bearings

High-temperature

- · YS bearings with spacer joints
- · SJ bearings

YS bearings with spacer joints

Corrosive environments

Wet environments

- · Stainless steel bearings
- · Molded-Oil™ bearings
- · Hybrid bearings
- · Corrosion-resistant coated bearings
- Alkali and weak acid environments
- · ESZ bearings
- Strong acid and reactive gas environments
- Aqua-Bearing™
- · All-ceramic bearings

Stainless steel bearings

Aqua-Bearing™

SPACEA™ Ser

Cleanroom environments

- At atmospheric pressure, room temperature
- · LG2 grease-packed bearings
- · LGU grease-packed bearings
- At atmospheric pressure, vacuum
- · FG9 fluorine grease-packed bearings
- · DFO bearings

Clean grease-packed bearings

High-temperature environments

- At atmospheric pressure, high-temperature
- KPM grease-packed bearings
- Vacuum, high-temperature
- YS bearings with spacer joints
- · SJ bearings

DFO bearings

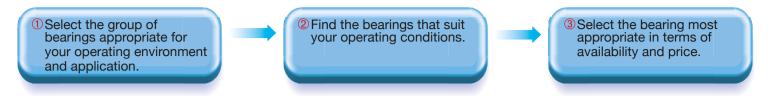
Non-magnetic requirements

· All-ceramic bearings

All-ceramic bearings

ies Bearings

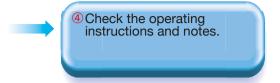
Molded-Oil™ bearings


Contaminated environments

- At atmospheric pressure, dust-contaminated
- Molded-Oil[™] bearings

B SPACEA™ Bearing Selection Guide-I

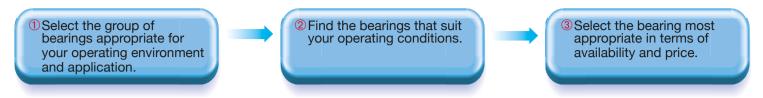
1. Select the most appropriate bearing with the following selection flow chart.



	Or	① perating environment	Product		ee of va Pa	cuum	Operating temperature °C			
	O,	Scratting criviloriment			≥10-4	≥10-8	≤100	≤200	≤300	≤400
	E	Classification of air cleanliness ⁽¹⁾ : Classes 5-6 (100–1 000)	FG9 fluorine grease-packed bearings	10	0-⁴Pa			200℃	For detai refer to P	ls, please age A47.
⊑	Cleanroom	Classification of air cleanliness(1): Classes	V-DFO bearings		10-7	Po		200℃	For detai	ls, please
Vacuum		4-5 (10–100)	E-DFO bearings		10	ra	150°	С	refer to P	age A50.
>	High- temperature	Up to 400 °C SJ bearings			1	0-8Pa				400 °C
	Hig tempe	Up to 350 ℃	YS bearings with spacer joints		1	0-8Pa			350°	С
		High-humidity	Stainless steel bearings				80 °C			
nts	Water	Water spray, immersed	Molded-Oil™ bearings				60 °C			
onme	Ma	water spray, infinersed	Hybrid bearings				150°			
e envir		Water, sterilization liquid	Corrosion-resistant coated bearings				150			
Corrosive environments		Weak acid and alkali	ESZ bearings				150°	С		
ပိ	C+r	rong acid and reactive acc	Aqua-Bearing™				100 °C			
	Strong acid and reactive		All-ceramic bearings				150°	С		

Notes

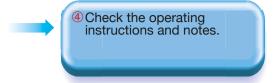
- (1) Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes). Cleanliness may vary depending on operating conditions, surrounding structures, and other factors.
- (2) d_mn = (bearing bore diameter + bearing outer diameter (mm)) ÷ 2 × rotational speed (min)⁻¹
- (3) The limiting load is estimated based on endurance (total rotational frequency) corresponding to 10⁷ as a guideline.
 - \dot{P} : equivalent load (N), $C_{\rm H}$: load rating (N) of stainless steel bearings
 - (Durability varies by operating environment and conditions.)



2	Operati	ng condi	tions								
	eanliness Fed. Sto		Limiting	g rotationa d _m n ⁽²⁾	l speed	Li	miting loa P/C _H (3)	ad	3 Price	3 Availability	SpecificationsOperating instructions
Classes 5-6 (100-1 000)	Class 5 (100)	Class 4 (10)	≤20 000	≤50 000	≤150 000	≤1%	≤2%	≤5%	comparison		·Technical data
•				50 000				5%	Low	Page A21-A22	Page A47-A48
C	Class 4 (1	0)	20 000				2%	5%	High	Page A23	Page A49-A50
			20 000			For detai Page A5	ls, please re 5.	fer to	Low	Page A26	Page A55-A56
			20 000			For detai Page A53	ls, please re 3.	fer to	High	Page A25	Page A53-A54
				1	50 000			5%	Low	Page A11-A14	Page A29-A30
			For deta Page A3	ils, please 33.	refer to		1 t	o 5%		Page A16	Page A33-A34
			20 000				2%			Page A17	Page A35-A36
			20 000				290			Page A17	Page A37-A38
			20 000				2%		High	Page A18	Page A39-A40
			20 000			1%			Low	Page A20	Page A43-A44
			20 000					5%	High	Page A19	Page A41-A42

Remarks: Please consult NSK about any unclear beaing specifications.

1. Select the most appropriate bearing with the following selection flow chart.



	① Operating environment	Product name		ee of vac	cuum	Ор	erating t	emperat	ure	
	Operating environment			≥10-4	≥10-8	≤100	≤200	≤300	≤400	
	For use at atmospheric pressure only	0					(LG2) °C (LGU)		
room	From atmospheric pressure up to vacuum	FG9 fluorine grease-packed bearings	1	10 ⁻ 4Pa			00°C	For details refer to Pa	s, please age A47.	
Cleanroom	Low outgassing and low	V-DFO bearings		10-7			00 °C For details, refer to Pag		nlease	
	particle emissions	E-DFO bearings	10 ⁻⁷ Pa		a	150 °				
<u>a</u>	For use at atmospheric pressure only, up to 230 °C	KPM grease-packed bearings	0				230 °C			
High-	From normal atmosphere up to 10° Pa, up to 400 °C	SJ bearings		10	O∗Pa			40	00 °C	
	up to 350 °C	YS bearings with spacer joints		10	0-*Pa			350 °C		
Non- magnetic	Completely non-magnetic (relative permeability 1.001 or less)	All-ceramic bearings	0			150 °	С			
nments		RLS grease-packed bearings	0			120 °C				
/ enviro	In food processing machinery	High-temperature BL2 grease-packed bearings	0			2	200°C			
Sanitan		Molded-Oil™ bearings with food grade lubricant	0			60 °C				
Contaminated Sanitary environments	Dust, wood waste, etc.	Molded-Oil™ bearings				60 °C				

Notes

- (1) Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes). Cleanliness may vary depending on operating conditions, surrounding structures and other factors.
- (2) d_mn = (bearing bore diameter + bearing outer diameter (mm)) ÷ 2 × rotational speed (min)⁻¹
- (3) The limiting load is estimated based on endurance (total rotational frequency) corresponding to 10⁷ as a guideline.
 - P: equivalent load (N), $C_{\rm H}$: load rating (N) of stainless steel bearings
 - (Durability varies by operating environment and conditions.)

Q	Operati	ing condi	tions									
	eanliness Fed. Sto		Limiting	rotationa d _m n ⁽²⁾	al speed	Li	miting loa P/C _{H⁽³⁾}	ad	3 Price	③ Availability	SpecificationsOperating instructions	
Classes 5-6 (100-1 000)	Class 5 (100)	Class 4 (10)	≤20 000	≤50 000	≤150 000	≤1%	≤2%	≤5%	comparison		·Technical data	
			_	2 222				50/	Low		Page A45-A46	
			5	0 000				5%		Page A21-A22	Page A47-A48	
	N 4 /4	0)	00,000				2%			D 400	D 440 450	
	Class 4 (1	0)	20 000					5%	High	Page A23	Page A49–A50	
			5	0 000				5%	Low	Page A24	Page A51-A52	
			20 000			For deta Page A5	l ils, please i 5.	refer to		Page A26	Page A55-A56	
			20 000			For deta Page A5	ils, please i 3.	refer to	High	Page A25	Page A53-A54	
			20 000					5%	_	Page A19	Page A41-A42	
				3	50 000			5%	Low	5 407 400	D 450 450	
				3	300 000			5%	High	Page A27-A28	Page A58-A59	
	_		For deta Page A3	ails, please 33.	refer to		1 t	o 5%	-	Page A16	Page A33-A34	
			For detail Page A59	s, please r).	efer to		1 to	5%	-	Page A60	Page A59-A60	

Remarks: Please consult NSK about any unclear bearing specifications.

1. Stainless Steel SPACEA™ Series Bearings

Accuracy of boundary dimensions and running accuracy

Note: The dimensional tolerance of the bore and outside diameter for corrosion-resistant coated bearings may deviate from the JIS Class 0 standard for coating thickness (maximum 5 µm in diameter).

Dimensional accuracy of bore diameter of inner ring

Unit: µm

diam	nal bore neter nm)	deviation diam sing		of bore diar single plane V_{dsp} Diameter Se)	Mean bore diameter variation (Cylindricity) V_{dmp}				
			·	7, 8, 9	0, 1	2, 3, 4				
Over	Incl	High	Low		Max		Max			
2.5	10	0	-8	10	8	6	6			
10	18	0	-8	10	8	6	6			
18	30	0	-10	13	10	8	8			
30	50	0	-12	15	12	9	9			

Dimensional accuracy of outside diameter of outer ring

Unit: µm

Nomina	l outside		e mean outside	Mea	n outside d (Out-of-ro	Mean outside		
	neter mm)	diameter de of single ou		Open	diameter variation (Cylindricity) V_{Dmp}			
		_		Diamete	<i>V D</i> mp			
					0, 1	2, 3, 4	2, 3, 4	
Over	Incl	High	Low		Max			Max
6	18	0	-8	10	8	6	10	6
18	30	0	-9	12	9	7	12	7
30	50	0	-11	14 11 8			16	8
50	80	0	-13	16	13	10	20	10

Dimensional accuracy of inner/outer ring width

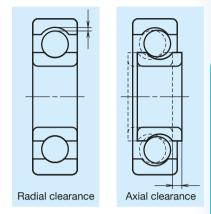
Unit: µm

Nomina diam d (m	eter	outer	f a single inner/ ring width $_{\rm s}$ or $_{ m \Delta_{CS}}$	Inner/outer ring width variation (Max-min) $V_{B\mathrm{S}}$ or V_{CS}
Over	Incl	High	Low	Max
2.5	10	0 –120		15
10	18	0	-120	20
18	30	0	-120	20
30	30 50		-120	20

Running accuracy

Unit: µm

Nomina diam d (m	eter	bearing	of assembled inner ring Gia	Radial runout of assembled bearing outer ring $k_{\rm ea}$
Over	Incl	High	Low	Max
2.5	10	1	0	15
10	18	1	0	15
18	30	1:	3	20
30	50	1.	5	25


Bearing internal clearance and standard values

Internal clearance of bearings refers to the amount that one ring, either the inner or outer, can be displaced relative to the other ring when one is fixed and the other is displaced either vertically or horizontally. The amount of displacement in the radial plane is called radial clearance, while the amount of displacement in the axial plane is called axial clearance.

Clearance is measured by adding a specific measuring load to a bearing in order to obtain a stable measured value. As a result, the measured clearance value, or measured internal clearance, becomes slightly larger than the theoretical internal clearance value (also known as geometrical clearance in the case of a radial bearing). The difference is known as the elastic deformation.

Theoretical internal clearance is derived by compensating for clearance caused by elastic deformation

Internal clearance of bearings prior to installation is usually defined by the theoretical internal clearance value.

Radial internal clearance of nominal bore diameter

Unit: µm

	al bore neter					Clea	rance				
	nm)	C2		C	CN		C3		34	C5	
Over Incl		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
10 only		0	7	2	13	8	23	14	29	20	37
10	18	0	9	3	18	11	25	18	33	25	45
18	24	0	10	5	20	13	28	20	36	28	48
24	30	1	11	5	20	13	28	23	41	30	53
30	40	1 11		11 6	20	15	33	28	46	40	64
40 50		1	11	6	23	18	36	30	51	45	73

Remarks When using the above values as measured clearance, the radial clearance caused by the measuring load must be compensated by the clearance compensation values listed in the following table. For compensation values for C2 clearance, the smaller value is applied to the smallest clearance and the larger value is applied to the largest clearance.

Clearance compensation

Unit: µm

diaı	nal bore meter	Measuring load		Clearance compensation value								
Over	(mm) Incl	(N)	C2	CN	C3	C4	C5					
10	18	24.5	3–4	4	4	4	4					
18	50	49	4–5	5	6	6	6					

Radial internal clearance of extra-small ball bearings

Unit: µm

Clearance code	MC1		MC1 MC2		М	MC3		MC4		MC5		MC6	
Clearance	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Clearance	0	5	3	8	5	10	8	13	13	20	20	28	

Remarks 1. Standard clearances are MC3.

2. When used as measured internal clearance, add the correction values in the following table.

Clearance correction

I Init:	ıım
Unit:	μm

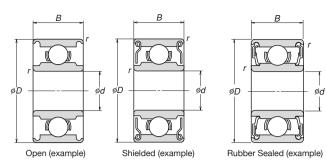
Clearance code	MC1	MC2	MC3	MC4	MC5	MC6
Clearance correction value	1	1	1	1	2	2

Remarks The measuring load for an extra-small ball bearing is 4.4 N.

1-1. Stainless Steel Bearings (Bore Diameter 1-12 mm)

Stocked as standard inventory

Bearings Specifications Tech. Data


Page A29–A30

Inquiry designation⁽¹⁾

Type of inquiry designation	Open	Shielded	Rubber Sealed
(A)	0000 U-H- * MAZ	0000-H-ZZ*MAZ NS7	0000-H-DD*MAZ NS7
(B)	0000 U-H-20T1X*MA	0000-H-20T1XZZ*MA NS7	0000-H-20T1XDDU*MA NS7

Boundary dimensions Chamfer			Dynamic		Availability		Limitina	1 : :::			
Bore diameter d (mm)	Outside diameter D (mm)	Width dimension		Basic designation ⁽²⁾	load rating, C _H (reference value) (N)	Open	Shielded (ZZ)	Rubber sealed (DD)	speed (reference value) (min-1)	Limiting load ⁽³⁾ (reference value) (N)	Type of inquiry designation
	3	1	0.05	681	81				10 000	4	
1	3	1.5	0.05	MR31	81				10 000	4	
	4	1.6	0.1	691	120				10 000	6	
1.2	4	2.5	0.1	MR41X	96				10 000	4	1
	4	2	0.05	681X	96				10 000	4]
1.5	5	2.6	0.15	691X	202				10 000	10	
	6	3	0.15	601X	281				10 000	14	
	5	2.3	0.08	682	144				10 000	7	
	5	2.5	0.1	MR52	144				10 000	7	
2	6	3	0.15	692	281				10 000	14	
_	6	2.5	0.15	MR62	281				10 000	14	-
	7	3	0.15	MR72	328				10 000	16	-
	7	3.5	0.15	602	328				10 000	16	
	6	2.6	0.08	682X	177				10 000	8 16	
2.5	7 8	3.5 2.5	0.15 0.2	692X MR82X	328 475				10 000 10 000	23	
	8	4	0.2	602X	469				10 000	23	-
	6	2.5	0.13	MR63	177				10 000	8	
	7	3	0.1	683	265				10 000	13	
	8	2.5	0.15	MR83	336				10 000	16	-
_	8	4	0.15	693	475				10 000	23	
3	9	4	0.15	MR93	486				10 000	24	(A)
	9	5	0.15	603	486				10 000	24	
	10	4	0.15	623	538				10 000	26	
	13	5	0.2	633	1 100				10 000	55	
	7	2.5	0.1	MR74	217				10 000	10	
	8	3	0.15	MR84	336				10 000	16	
	9	4	0.1	684	545				10 000	27	
4	10	4	0.2	MR104	604				10 000	30	
•	11	4	0.15	694	815				10 000	40	
	12	4	0.2	604	815				10 000	40	
	13	5	0.2	624	1 110				10 000	55	
	16	5	0.3	634	1 140				10 000	56	
	8	2.5	0.1	MR85	185 367				10 000 10 000	9 18	-
	9	3 4	0.15 0.15	MR95 MR105	367			_	10 000	18	-
	11	4	0.15	MR115	609				10 000	30	-
5	11	5	0.15	685	609	_		_	10 000	30	-
J	13	4	0.13	695	916				10 000	45	-
	14	5	0.2	605	1 130				10 000	56	-
	16	5	0.3	625	1 470				10 000	73	-
	19	6	0.3	635	1 990				10 000	99	

	Boundary of	dimensions			Dynamic		Availability				
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation ⁽²⁾	load rating, C _H (reference value) (N)	Open	Shielded (ZZ)	Rubber sealed (DD)	Limiting speed (reference value) (min-1)	Limiting load ⁽³⁾ (reference value) (N)	Type of inquiry designation
	10	3	0.1	MR106	423				10 000	21	
	12	4	0.2	MR126	608				10 000	30	
	13	5	0.15	686	920				10 000	46	
6	15	5	0.2	696	1 140				10 000	56	
	17	6	0.3	606	1 920				10 000	96	
	19	6	0.3	626	1 990				10 000	99	
	22	7	0.3	636	2 800				10 000	140	
	11	3	0.15	MR117	388				10 000	19	
	13	4	0.15	MR137	460				10 000	23	(A)
7	14	5	0.15	687	1 000				10 000	50	` ′
7	17	5	0.3	697	1 370				10 000	68	
	19	6	0.3	607	1 990				10 000	99	
	22	7	0.3	627	2 800				10 000	140	
	12	3.5	0.15	MR128	463				10 000	23	
	14	4	0.15	MR148	696				10 000	34	
	16	5	0.2	688	1 070				10 000	53	
8	19	6	0.3	698	1 900				10 000	95	
	22	7	0.3	* 608	2 800				10 000	140	(B)
	24	8	0.3	628	2 850				9 370	140	, ,
	28	9	0.3	638	3 890				8 330	190	
	17	5	0.2	689	1 130				10 000	56	
	20	6	0.3	699	2 100				10 000	100	
9	24	7	0.3	609	2 850				9 090	140	(A)
	26	8	0.6	629	3 890				8 570	190	
	30	10	0.6	639	4 350				7 690	210	
	15	3 4	0.15	6700	729			•	10 000	36	
40	19	5	0.3	* 6800	1 460			•	10 000	73	
10	22	6	0.3	* 6900	2 290				9 370	110	(B)
	26	8	0.3	* 6000	3 900				8 330	190	(B)
	30	9	0.6	* 6200	4 350				7 500	210	
	18	4	0.2	6701	789				10 000	39	(A)
	21	5	0.3	* 6801	1 630				9 090	82	
12	24	6	0.3	* 6901	2 460				8 330	120	(D)
	28	8	0.3	* 6001	4 350			•	7 500	210	(B)
	32	10	0.6	* 6201	5 800				6 810	290	

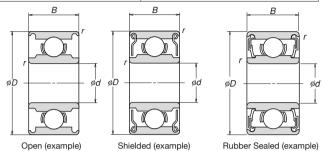
Mark: Stocked as standard inventory.(4)

Notes (1) The actual designation may differ from the inquiry designation. [][][] indicates the basic designation.

- (2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
- (3) Limiting load values are for reference only; they are not guaranteed.
- (4) Orders for standard inventory may be delayed, particularly if shipped from Japan.

Remarks 1. Open bearings do not include grease. Ensure that an appropriate lubricant is used with these bearings.

2. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on Page A10 for further details.


1-1. Stainless Steel Bearings (Bore Diameter 15–60 mm)

Stocked as standard inventory

Bearings
Specifications Page A29–A30

Inquiry designation⁽¹⁾

Type of inquiry designation	Open	Shielded	Rubber Sealed
(A)	0000 U-H- * MAZ	0000-H-ZZ*MAZ NS7	0000-H-DD*MAZ NS7
(B)	0000 U-H-20T1X * MA	0000-H-20T1XZZ*MA NS7	□ □□□ -H-20T1XDDU∗MA NS7

	Boundary of	dimensions				Dynamic	<u> </u>	Availability				
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)		Basic gnation [©]	load rating, C _H (reference value) (N)	Open	Shielded (ZZ)	Rubber sealed (DD)	Limiting speed (reference value) (min ⁻¹)	Limiting load [®] (reference value) (N)	Type of inquiry designation
	21	4	0.2		6702	797				8 330	40	(A)
	24	5	0.3	*	6802	1 760				7 690	88	
15	28	7	0.3	*	6902	3 700				6 970	180	(B)
	32	9	0.3	*	6002	4 750				6 380	230	(B)
	35	11	0.6	*	6202	6 500				6 000	320	
	23	4	0.2		6703	849				7 500	42	(A)
	26	5	0.3	*	6803	2 240				6 970	110	
17	30	7	0.3	*	6903	3 900				6 380	190	(B)
	35	10	0.3	*	6003	5 100				5 760	250	(6)
	40	12	0.6	*	6203	8 150				5 260	400	
	27	4	0.2		6704	885				6 380	44	(A)
	32	7	0.3	*	6804	3 400				5 760	170	
20	37	9	0.3	*	6904	5 400				5 260	270	(B)
	42	12	0.6	*	6004	7 950				4 830	390	(6)
	47	14	1	*	6204	10 900				4 470	540	
	32	4	0.2		6705	931			(4)	5 260	47	(A)
	37	7	0.3	*	6805	3 800				4 830	190	
25	42	9	0.3	*	6905	5 950				4 470	290	(B)
	47	12	0.6	*	6005	8 550				4 160	420	(6)
	52	15	1	*	6205	11 900				3 890	590	
	37	4	0.2		6706	969				4 470	48	(A)
30	55	13	1	*	6006	11 300				3 520	560	(B)
	62	16	1	*	6206	16 500				3 260	820	
	44	5	0.3		6707	1 590				3 790	79	(A)
35	62	14	1	*	6007	13 600				3 090	680	(B)
	72	17	1.1	*	6207	21 800				2 800	1 090	
	50	6	0.3		6708	2 140				3 330	100	(A)
40	68	15	1	*	6008	14 200				2 770	710	
	80	18	1.1	*	6208	24 800				2 500	1 240	
45	75	16	1	*	6009	17 800				2 500	890	
	85	19	1.1	*	6209	26 600				2 300	1 330	
50	80	16	1	*	6010	18 500				2 300	920	(B)
	90	20	1.1	*	6210	29 800				2 140	1 490	(5)
55	90	18	1.1	*	6011	24 000				2 060	1 200	
	100	21	1.5	*	6211	37 000				1 930	1 850	1
60	95	18	1.1	*	6012	25 000				1 930	1 250	_
	110	22	1.5	*	6212	44 500				1 760	2 220	

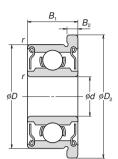
Mark: Stocked as standard inventory. (5)

- Notes (1) The actual designation may be differ from the inquiry designation. [IDD] indicates the basic designation.
 - (2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
 - (3) Limiting load values are for reference only; they are not guaranteed.
 - (4) Uses non-contact seals.
 - (5) Orders for standard inventory may be delayed, particularly if shipped from Japan.

Remarks 1. Open bearings do not include grease. Ensure that an appropriate lubricant is used with these bearings.

2. The radial internal clearance for the bearings on this page is CN. See the radial internal clearance tables on Page A10 for further details.

1-2. Stainless Steel Bearings (with flanged outer ring)


Stocked as standard inventory

● Inquiry designation⁽¹⁾
□□□□ -H-ZZ*MAZ NS7

Specifications

rings ications Page A29-A30

Boundary dimensions					Dynamic		Limiting	Limiting		
Bore	Outside		Flanged	Flanged	Chamfer	Basic	load rating,		speed	load ⁽²⁾
diameter	diameter	Width	Outside	width	dimension	designation	C _H (reference	Availability	(reference	(reference
d	D	B_1	diameter D_2	B_2	(min.) <i>r</i>	designation	value)		value)	value)
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		(N) [']		(min⁻¹)	(N)
	4	2	5	0.6	0.05	F681X	96		10 000	4
1.5	5	2.6	6.5	0.8	0.15	F691X	202		10 000	10
	6	3	7.5	0.8	0.15	F601X	281		10 000	14
	5	2.3	6.1	0.6	0.08	F682	144		10 000	7
	5	2.5	6.2	0.6	0.1	MF52	144		10 000	7
2	6	3	7.5	0.8	0.15	F692	281		10 000	14
	7	3	8.2	0.6	0.15	MF72	328		10 000	16
	7	3.5	8.5	0.9	0.15	F602	328		10 000	16
	6	2.6	7.1	0.8	0.08	F682X	177		10 000	8
2.5	7	3.5	8.5	0.9	0.15	F692X	328		10 000	16
	8	4	9.5	0.9	0.15	F602X	469		10 000	23
	6	2.5	7.2	0.6	0.1	MF63	177		10 000	8
	7	3	8.1	0.8	0.1	F683	265		10 000	13
3	8	4	9.5	0.9	0.15	F693	475		10 000	23
3	9	4	10.6	0.8	0.15	MF93	486		10 000	24
	9	5	10.5	1	0.15	F603	486		10 000	24
	10	4	11.5	1	0.1	F623	538		10 000	26
	7	2.5	8.2	0.6	0.1	MF74	217		10 000	10
	8	3	9.2	0.6	0.15	MF84	336		10 000	16
	9	4	10.3	1	0.1	F684	545		10 000	27
4	10	4	11.6	0.8	0.2	MF104	604		10 000	30
4	11	4	12.5	1	0.15	F694	815		10 000	40
	12	4	13.5	1	0.2	F604	815		10 000	40
	13	5	15	1	0.2	F624	1 110		10 000	55
	16	5	18	1	0.3	F634	1 140		10 000	56
	8	2.5	9.2	0.6	0.1	MF85	185		10 000	9
	9	3	10.2	0.6	0.15	MF95	367		10 000	18
	10	4	11.6	0.8	0.15	MF105	367		10 000	18
5	11	5	12.5	1	0.15	F685	609		10 000	30
3	13	4	15	1	0.2	F695	916		10 000	45
	14	5	16	1	0.2	F605	1 130		10 000	56
	16	5	18	1	0.3	F625	1 470		10 000	73
	19	6	22	1.5	0.3	F635	1 990		10 000	99
	10	3	11.2	0.6	0.15	MF106	423		10 000	21
	12	4	13.6	0.8	0.2	MF126	608		10 000	30
6	13	5	15	1.1	0.15	F686	920		10 000	46
U	15	5	17	1.2	0.2	F696	1 140		10 000	56
	17	6	19	1.2	0.3	F606	1 920		10 000	96
	19	6	22	1.5	0.3	F626	1 990		10 000	99
	11	3	12.2	0.6	0.15	MF117	388		10 000	19
	13	4	14.6	0.8	0.15	MF137	460		10 000	23
7	14	5	16	1.1	0.15	F687	1 000		10 000	50
,	17	5	19	1.2	0.3	F697	1 370		10 000	68
	19	6	22	1.5	0.3	F607	1 990		10 000	99
	22	7	OF	4 -	0.0	E627	0.000		10 000	140

Shielded (example)

Mark: Stocked as standard inventory.(3)

3.5

4

5

6

7

5

6

5

12

14

16

19

17

20

19

8

9

10

Notes (1) The actual designation may be differ from the inquiry designation. [IIIII] indicates the basic designation.

8.0

0.8

1.1

1.5

1.5

1.1

1.5

0.3

0.15

0.15

0.2

0.3

0.3

0.2

0.3

0.3

(2) Limiting load values are for reference only; they are not guaranteed.

13.6

15.6

18

22

25

19

23

21

- $\hbox{(3) Orders for standard inventory may be delayed, particularly if shipped from Japan.}\\$
- Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on Page A10 for further details.

F627

MF128

MF148

F688

F698

F608

F689

F699

F6800

2 800

463

696

1 070

1 900

2 800

1 130

2 100

1 460

10 000

10 000

10 000

10 000

10 000

10 000

10 000

10 000

10 000

140

23

34

53

95

140

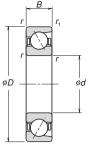
56

100

73

2. Shielded bearings are standard.

2. Stainless Steel Angular Contact Ball Bearings


Stocked as standard inventory

Bearings Specifications

Page A31

Inquiry designation⁽¹⁾

For atmospheric pressure environments	For vacuum environments
0000 -H-20TYNSULP5	0000 -H-20(T4N)SULP5U264

	Bou	ndary dimens	ions			Dynamic	Avail	ability	Limiting	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.)	Chamfer dimension (min.) r ₁ (mm)	Basic designatio	load rating, C _H (reference value) (N)	For use in atmospheric pressure and cleanroom environments	For use in vacuum, cleanroom and high-temperature environments	speed (reference value) (min ⁻¹)	load ⁽³⁾ (reference value) (N)
6	17	6	0.3	0.15	* 706A	1 730			10 000	86
8	22	7	0.3	0.15	* 708A	2 840			10 000	140
10	26	8	0.3	0.15	* 7000A	4 250			8 330	210
12	28	8	0.3	0.15	* 7001A	4 600			7 500	230
	28	7	0.3	0.15	* 7902A	3 850			6 970	190
15	32	9	0.3	0.15	* 7002A	4 900			6 380	240
	35	11	0.6	0.3	* 7202A	6 900			6 000	340
17	35	10	0.3	0.15	* 7003A	5 200			5 760	260
	37	9	0.3	0.15	* 7904A	5 600			5 260	280
20	42	12	0.6	0.3	* 7004A	8 750			4 830	430
	47	14	1	0.6	* 7204A	11 600			4 470	580
25	47	12	0.6	0.3	* 7005A	9 150			4 160	450
25	52	15	1	0.6	* 7205A	13 100			3 890	650
30	47	9	0.3	0.15	* 7906A	6 700			3 890	330

Mark: Stocked as standard inventory.(4)

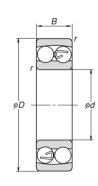
Notes (1) The actual designation may differ from the inquiry designation. [1000] indicates the basic designation.

- (2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
- (3) Limiting load values are for reference only; they are not guaranteed.
- (4) Orders for standard inventory may be delayed, particularly if shipped from Japan.

Remarks: Ensure that an appropriate lubricant is used with these bearings.

3. Stainless Steel Self-Aligning Ball Bearings

Stocked as standard inventory


Bearings Specifications Tech. Data

Page A32

Inquiry designation⁽¹⁾

0000 -H-20

	Boundary of	dimensions			Dynamic		Limiting	Limiting	Radial
Bore diameter d (mm)	Outside diameter D (mm)	Width <i>B</i> (mm)	Chamfer dimension (min.) r (mm)	Basic designation ⁽²⁾	load rating, C _H (reference value) (N)	Availability	speed (reference value) (min ⁻¹)	load ⁽³⁾ (reference value) (N)	internal clearance (mm)
10	30	9	0.6	* 1200	4 750		7 500	230	0.006-0.017
12	32	10	0.6	* 1201	4 850		6 810	240	0.006-0.019
15	35	11	0.6	* 1202	6 450		6 000	320	0.008-0.021
17	40	12	0.6	* 1203	6 800		5 260	340	0.008-0.021
20	47	14	1	* 1204	8 500		4 470	420	0.010-0.023
25	52	15	1	* 1205	10 400		3 890	520	0.011-0.024

Mark: Stocked as standard inventory. (4)

Notes (1) The actual designation may differ from the inquiry designation. [][][] indicates the basic designation.

- (2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
- (3) Limiting load values are for reference only; they are not guaranteed.
- (4) Orders for standard inventory may be delayed, particularly if shipped from Japan.

Remarks: Ensure that an appropriate lubricant is used with these bearings.

4. Molded-Oil™ Bearings

Stocked as standard inventory

Available on a productionby-order basis


Bearings Specifications Tech. Data

Page A33-A34

Inquiry designation⁽¹⁾

General grade lubricant	Food grade lubricant			
0000 L11-H-20DDU GVS	0000 L21-H-20DDUU401 GVS			

	Boundary of	dimensions			Availa	ability	Limiting	Applied
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation ⁽²⁾	General grade lubricant	Food grade lubricant	speed ⁽³⁾ (reference value) (min ⁻¹)	load ⁽⁴⁾ (reference value) (N)
	22	6	0.3	* 6900		0	9 370	23 – 110
10	26	8	0.3	* 6000		0	8 330	39 – 190
	30	9	0.6	* 6200		0	7 500	44 – 210
	24	6	0.3	* 6901		0	8 330	25 – 120
12	28	8	0.3	* 6001		0	7 500	44 – 210
	32	10	0.6	* 6201		0	6 810	58 – 290
1.5	32	9	0.3	* 6002		0	6 380	48 – 230
15	35	11	0.6	* 6202		0	6 000	65 – 320
17	35	10	0.3	* 6003		0	5 760	51 – 250
17	40	12	0.6	* 6203		0	5 260	82 – 400
	42	12	0.6	* 6004		0	4 830	80 – 390
20	47	14	1	* 6204		0	4 470	110 – 540
05	47	12	0.6	* 6005		0	4 160	86 – 420
25	52	15	1	* 6205		0	3 890	120 – 590
30	55	13	1	* 6006		0	3 520	120 – 560

Rubber Sealed (example)

Mark: Stocked as standard inventory. (5)

Notes (1) The actual designation may differ from the inquiry designation. [][][] indicates the basic designation.

- (2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
- (3) The limiting speed of these bearings has been calculated for 25 °C operating conditions. Limiting speeds will be slower for operating conditions of 35 °C or highter. (Refer to Page A33 for further details.)
- (4) Applied load values are for reference only; they are not guaranteed.
- (5) Orders for standard inventory may be delayed, particularly if shipped from Japan.

Remarks 1. The radial internal clearance for the bearings on this page is CN. See the radial internal clearance tables on Page A10 for further details.

2. Rubber contact seals are standard.

5. Hybrid Bearings

Available on a productionby-order basis

Bearings Specification Tech Data Page A35-A36

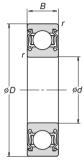
Inquiry designation⁽¹⁾

0000-H-20SN14T36ZZU76A GVS

Dimensions, accuracy, and availability are listed in the next section.

6. Corrosion-Resistant Coated Bearings

Available on a productionby-order basis


Inquiry designation⁽¹⁾

U- 0000 -H-20SN14S5NYT36ZZU76A GVS

Bearings Specification

ons Page A37-A38

	Boundary of	dimensions			Avail	ability	Limiting	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation ⁽²⁾	Hybrid bearings	Corrosion- resistant coated bearings	speed (reference value) (min-1)	load ⁽³⁾ (reference value) (N)
10	26	8	0.3	* 6000			1 000	78
10	30	9	0.6	* 6200			1 000	87
12	28	8	0.3	* 6001			1 000	87
12	32	10	0.6	* 6201			900	110
15	32	9	0.3	* 6002			850	95
15	35	11	0.6	* 6202			800	130
17	35	10	0.3	* 6003			760	100
17	40	12	0.6	* 6203			700	160
	37	9	0.3	* 6904	0	0	700	100
20	42	12	0.6	* 6004	0		640	150
	47	14	1	* 6204			590	210
	42	9	0.3	* 6905	0		590	110
25	47	12	0.6	* 6005	Ó	O	550	170
	52	15	1	* 6205	0		510	230
30	55	13	1	* 6006	0	0	470	220

Shielded (example)

Mark: Available on a production-by-order basis.

Notes (1) The actual designation may differ from the inquiry designation. [1000] indicates the basic designation.

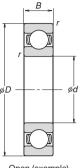
- (2) An asterisk (*) indicated that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
- (3) Limiting load values are for reference only; they are not guaranteed.

Remarks 1. The radial internal clearance for the bearings on this page ranges from CN (minimum clearance) to C3 (maximum clearance). See the radial internal clearance tables on Page A10 for further details.

2. Shielded bearings are standard.

7. ESZ Bearings

Available on a productionby-order basis

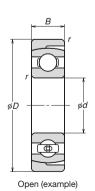

Page A39-A40

Deep Groove Ball Bearings

Inquiry designation⁽¹⁾

ESZ 0000

	Boundary of	dimensions				Limiting	Limitina
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation	Availability	speed (reference value) (min-1)	load [©] (reference value) (N)
	26	8	0.3	6000	0	1 000	78
10	30	9	0.6	6200	Ö	1 000	87
12	28	8	0.3	6001	0	1 000	87
12	32	10	0.6	6201	0	900	110
15	32	9	0.3	6002		850	95
15	35	11	0.6	6202	0	800	130
17	35	10	0.3	6003		760	100
17	40	12	0.6	6203		700	160
20	42	12	0.6	6004	0	640	150
20	47	14	1	6204		590	210
25	47	12	0.6	6005		550	170
	52	15	1	6205		510	230
30	55	13	1	6006		470	220
	62	16	1	6206		430	330
35	62	14	1	6007		410	270
	72	17	1.1	6207		370	430
40	68	15	1	6008		370	280
40	80	18	1.1	6208		330	490
45	75	16	1	6009		330	350
45	85	19	1.1	6209		300	530
50	80	16	1	6010	0	300	370
	90	20	1.1	6210		280	590
55	90	18	1.1	6011		270	480
	100	21	1.5	6211	0	250	740
60	95	18	1.1	6012	0	250	500
	110	22	1.5	6212	0	230	890


Open (example)

Deep Groove Ball Bearings With Aligning Housing Ring

Inquiry designation⁽¹⁾

ESZ 0000

	Boundary of	dimensions				Limiting	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation	Availability	speed (reference value) (min-1)	load ⁽²⁾ (reference value) (N)
10	35	9	0.6	CD200	0	1 000	87
12	37	10	0.6	CD201	0	900	110
15	40	11	0.6	CD202		800	130
17	46	12	0.6	CD203		700	160
20	54	14	1	CD204		590	210
25	60	15	1	CD205		510	230
30	72	16	1	CD206		430	330

Mark: O Available on a production-by-order basis.

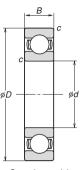
Note (1) The actual designation may differ from the inquiry designation. [][][] indicates the basic designation.

(2) Limiting load values are for reference only; they are not guaranteed.

Remarks 1. The radial internal clearance for the bearings on this page is C3. See the radial internal clearance tables on Page A10 for further details.

2. Open bearings are standard.

8. All-Ceramic Bearings


Available on a productionby-order basis

Bearings Specification Tech Data

Page A41-A42

● Inquiry designation⁽¹⁾

	Boundary of	dimensions				Limiting	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation	Availability	speed (reference value) (min-1)	load ⁽²⁾ (reference value) (N)
8	22	7	0.3	608	0	1 000	140
10	19	5	0.3	6800	0	1 000	73
10	26	8	0.3	6000		1 000	190
12	28	8	0.3	6001	0	1 000	210
20	42	12	0.6	6004		640	390
20	47	14	1	6204	0	590	540
30	62	16	1	6206	0	430	820
40	68	15	1	6008	Ó	370	710

Open (example)

Mark: O Available on a production-by-order basis.

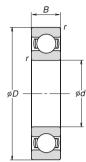
Note (1) The actual designation may differ from the inquiry designation. [][][] indicates the basic designation.

(2) Limiting load values are for reference only; they are not guaranteed.

Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm ranges from MC3 (minimum clearance) to MC5 (maximum clearance). The radial internal clearance for bearings with bore diameters of 10 mm or larger ranges from CN (minimum clearance) to C4 (maximum clearance). See the radial internal clearance tables on Page A10 for further details.

2. Open bearings are standard.

9. Aqua-Bearing™


Available on a productionby-order basis

Bearings Specification Tech. Data

Page A43-A44

● Inquiry designation⁽¹⁾

Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation	Availability	Limiting speed (reference value) (min ⁻¹)	Limiting load ⁽³⁾ (reference value) (N)	Radial internal clearance (mm)	øD
	22	6	0.3	6900		1 000	22		
10	26	8	0.3	6000	0	1 000	39	0.04-0.12	
	30	9	0.6	6200		1 000	43		
12	28	8	0.3	6001		1 000	43	0.05-0.14	
12	32	10	0.6	6201	0	900	58	0.05-0.14	1
	32	9	0.3	6002		850	47	0.05.014	Ċ
15	35	11	0.6	6202	0	800	65	0.05–0.14	
	37	9	0.3	6904	0	700	54		
20	42	12	0.6	6004	0	640	79	0.05-0.15	
	47	14	1	6204	0	590	100		
05	42	9	0.3	6905		590	59	0.00.0.10	
25	47	12	0.6	6005		550	85	0.06–0.16	

Open (example)

Mark: O Available on a production-by-order basis.

Notes (1) The actual designation may be differ from the inquiry designation. [] indicates the basic designation.

(2) Tolerances: bore diameter: 0 mm to +0.05 mm; outer diameter: -0.05 mm to 0 mm

(3) Limiting load values are for reference only; they are not guaranteed.

Remarks: Open bearings are standard.

10. LG2/LGU Grease-Packed Bearings

Stocked as standard inventory

Available on a productionby-order basis

Bearings Specifications Tech. Data

Page A45-A46

Inquiry designation⁽¹⁾

Type of inquiry designation	LG2 Grease-Packed Bearing	LGU Grease-Packed Bearing
(4)	Availability • : 0000 -H-ZZU76 LG2L	0000 L-ZZ-H LGUL
(A)	Availability : 0000 LZZ-H LG2L	LUUU L-ZZ-H LGOL
(B)	Availability : 0000 -H-ZZU76 LG2L	0000-H-20ZZU76A LGUL
(B)	Availability : [][][] -H-20ZZU76A LG2L	

Dimensions, accuracy, and availability are listed in the next section.

11. FG9 Fluorine Grease-Packed Bearings

Available on a productionby-order basis Bearings Specifications

Page A47-A48

Inquiry designation⁽¹⁾

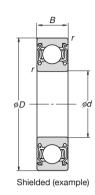
Type of inquiry designation	FG9 Grease-Packed Bearing
(A)	0000 LZZ-H FG9
(B)	0000-H-20ZZU552 FG9

	Boundary of	dimensions				Availability		Limiting	I institus s	
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation ⁽²⁾	LG2 grease	LGU grease	FG9 grease	speed (reference value) (min-1)	Limiting load [®] (reference value) (N)	Type of inquiry designation
	6	2.5	0.1	MR63	•			1 000	8	
3	8	4	0.15	693	•			1 000	23	
	10	4	0.15	623	•			1 000	26	
•	7	2.5	0.1	MR74	•			1 000	10	
	9	4	0.1	684	•			1 000	27	
4	11	4	0.15	694	•			1 000	40	
	12	4	0.2	604	•	0	0	1 000	40	
	13	5	0.2	624	•			1 000	55	
	11	5	0.15	685				1 000	30	
5	13	4	0.2	695	•			1 000	45	(A)
	14	5	0.2	605	•			1 000	56	- - -
	16	5	0.3	625	•			1 000	73	
	13	5	0.15	686	•			1 000	46	
6	15	5	0.2	696	•			1 000	56	
O	17	6	0.3	606	•			1 000	96	
	19	6	0.3	626	•			1 000	99	
	14	5	0.15	687	•			1 000	50	
7	17	5	0.3	697	•			1 000	68	
1	19	6	0.3	607	•			1 000	99	
	22	7	0.3	* 627				1 000	140	(B)
	16	5	0.2	688	•			1 000	53	(4)
0	19	6	0.3	698	•	0	0	1 000	95	(A)
8	22	7	0.3	* 608	•	0	0	1 000	140	(B)
	24	8	0.3	628	•			1 000	140	
	17	5	0.2	689	•			1 000	56	(A)
9	20	6	0.3	699				1 000	100	1 ` ′
	24	7	0.3	* 609				1 000	140	
	26	8	0.6	* 629	0		0	1 000	190	(B)
9.525	22.225	7.142	0.4	* R6	0	0	0	1 000	140	

Mark: ● Stocked as standard inventory.⁽⁴⁾ ○ Available on a production-by-order basis.

Notes (1) The actual designation may differ from the inquiry designation. [][[][] indicates the basic designation.

Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on Page A10 for further details.


2. Shielded bearings are standard.

⁽²⁾ An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring. However, stocked as standard inventory items use standard stainless steel.

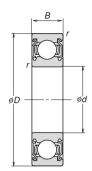
⁽³⁾ Limiting load values are for reference only; they are not guaranteed.

⁽⁴⁾ Orders for standard inventory may be delayed, particularly if shipped from Japan.

	D 1	P				A 21 1 222				
	Boundary of	dimensions				Availability		Limiting	Limiting	
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation ⁽²⁾	LG2 grease	LGU grease	FG9 grease	speed (reference value) (min-1)	load ⁽³⁾ (reference value) (N)	Type of inquiry designation
	19	5	0.3	* 6800	•	0	0	1 000	73	
10	22	6	0.3	* 6900	•	Ö	Ö	1 000	110	
10	26	8	0.3	* 6000	•	0	0	1 000	190	
	30	9	0.6	* 6200	•	0	0	1 000	210	
	21	5	0.3	* 6801	•	0	0	1 000	82	
12	24	6	0.3	* 6901	•	0	0	1 000	120	
12	28	8	0.3	* 6001	•			1 000	210	
	32	10	0.6	* 6201	•			1 000	290	
	24	5	0.3	* 6802				1 000	88	
15	28	7	0.3	* 6902	•			1 000	180	
15	32	9	0.3	* 6002	•			1 000	230	
	35	11	0.6	* 6202	•			1 000	320	(B)
	26	5	0.3	* 6803				1 000	110	(6)
17	30	7	0.3	* 6903				1 000	190	
17	35	10	0.3	* 6003	•			1 000	250	
	40	12	0.6	* 6203	•			1 000	400	
	32	7	0.3	* 6804	•			1 000	170	
20	37	9	0.3	* 6904	•			1 000	270	
20	42	12	0.6	* 6004	•			1 000	390	
	47	14	1	* 6204	•	0	0	1 000	540	
	37	7	0.3	* 6805	0	0	0	1 000	190	
25	42	9	0.3	* 6905				1 000	290	
25	47	12	0.6	* 6005	•			1 000	420	
	52	15	1	* 6205	•	0		1 000	590	
	42	7	0.3	6806	0			1 000	190	(4)
30	47	9	0.3	6906	0			1 000	300	(A)
30	55	13	1	* 6006	0			1 000	560	
	62	16	1	* 6206	0			1 000	820	(B)
35	62	14	1	* 6007	0			1 000	680	1 ` ′
35	72	17	1.1	6207	0			930	1 090	
40	68	15	1	6008	\circ	0	0	920	710	(A)
40	80	18	1.1	6208	0		O	830	1 240	

12. DFO Bearings

Available on a productionby-order basis


Bearings Specifications Tech Data

Page A49-A50

Inquiry designation⁽¹⁾

Type of inquiry designatio	E-DFO Bearing	V-DFO Bearing
(A)	0000 LZZ-HFD4 GVS	0000-LZZ-HFD GVS
(B)	U- 000 -H-20S8FD4ZZ GVS	U- 000 -H-20S8FDZZ GVS

Born Outside Width Chambre Gilameter Gilameter Gilameter Outside Width Gilameter Outside Width Chambre Basin Chambre Segration Availability (reference value) Chambre Ch		(-)						-				
	E	Boundary of	dimension	s		E-	DFO Bearin	ngs	V-	DFO Bearin	igs	
(mm)	diameter	diameter		dimension (min.)		Availability	speed (reference	load ⁽³⁾ (reference	Availability	speed (reference	load ⁽⁴⁾ (reference	inquiry
11	(mm)	(mm)	(mm)									
12						O			O			
13	4		-			$\stackrel{\frown}{\circ}$			\bigcirc			
111												
5 13 4 0.2 695 0 1000 45 0 1000 22 16 5 0.3 625 0 1000 73 0 1000 29 13 5 0.15 686 0 1000 73 0 1000 29 15 5 0.2 986 0 1000 36 1000 38 19 6 0.3 606 1000 99 1000 39 14 5 0.15 687 1000 50 1000 39 14 5 0.15 687 1000 50 1000 39 19 6 0.3 607 1000 99 1000 39 19 6 0.3 607 1000 99 1000 39 19 6 0.3 688 1000 53 1000 21 19 6 0.3 8681 1000 10 1000 3						\vdash					_	-
14	_					$- \times$						1
13 5 0.15 686	5					Ŏ			Ŏ			
6 15 5 0.2 696 0.1 000 56 0.1 000 28 19 6 0.3 626 0.1 000 99 0.1 000 38 14 5 0.15 687 0.1 000 99 0.1 000 39 14 5 0.15 687 0.1 000 50 0.1 000 29 17 17 5 0.3 697 0.1 000 68 0.1 000 29 22 7 0.3 627 0.1 000 53 0.1 000 39 18 19 6 0.3 697 0.1 000 53 0.1 000 56 18 19 6 0.3 698 0.1 000 53 0.1 000 38 19 6 0.3 698 0.1 000 53 0.1 000 39 10 22 7 0.3 8 698 0.1 000 53 0.1 000 57 17 5 0.2 888 0.1 000 53 0.1 000 57 17 5 0.2 889 0.1 000 140 0.1 000 56 24 8 0.3 8 628 0.1 000 140 0.1 000 57 17 5 0.2 8 689 0.1 000 140 0.1 000 57 17 5 0.2 8 689 0.1 000 140 0.1 000 57 26 8 0.3 8 609 0.1 000 140 0.1 000 57 26 8 8 6.0 8 629 0.1 000 140 0.1 000 56 19 5 0.3 8 6890 0.1 000 140 0.1 000 56 19 5 0.3 8 6890 0.1 000 140 0.1 000 56 19 5 0.3 8 6890 0.1 000 140 0.1 000 56 19 5 0.3 8 6890 0.1 000 130 0.1 000 73 10 22 6 0.3 8 6890 0.1 000 130 0.1 000 45 10 22 6 0.3 8 6890 0.1 000 130 0.1 000 87 11 5 0.3 8 6890 0.1 000 130 0.1 000 87 12 24 6 0.3 8 6890 0.1 000 130 0.1 000 87 12 24 6 0.3 8 6890 0.1 000 130 0.1 000 87 13 24 5 0.3 8 6890 0.1 000 130 0.1 000 87 14 5 0.3 8 6890 0.1 000 130 0.1 000 87 15 32 9 0.3 8 6890 0.1 000 100 100 100 100 100 10 24 5 0.3 8 6890 0.1 000 100 100 100 100 10 24 5 0.3 8 6890 0.1 000 100 100 100 100 100 10 24 5 0.3 8 6890 0.1 000 100			5			Ŏ	1 000	73	Ŏ	1 000	29	(A)
17						Q			Q			
19	6								\bigcirc			
Table Tabl												_
T												
19 6 0.3 607 1000 99 1000 39 1000 39 16 50 22 7 0.3 627 1000 140 1000 56 (B) 16 5 0.2 688 1000 53 1000 21 (A) 1000 22 (A) 22 7 0.3 698 1000 95 1000 38 (A) 22 7 0.3 698 1000 140 1000 56 24 8 0.3 628 1000 140 1000 57 (B) 24 7 0.3 699 1000 140 1000 57 (B) 20 6 0.3 699 1000 100 100 1000 42 (A) 24 7 0.3 609 1000 100 100 1000 57 (B) 26 8 8 0.6 629 1000 190 1000 57 (B) 22 6 8 8 0.6 629 1000 190 1000 57 (B) 22 6 8 0.6 62 62 62 63 8 699 1000 140 1000 57 (A) 42 (A) 4 4 4 4 4 4 4 4 4	_							1	\sim			
16 5 0.2 688	7					Ŏ			Ŏ			
8					* 627	Ŏ	1 000	140	Ō	1 000	56	(B)
8						Q			Q			(A)
Part	8					$\vdash \bigcirc$			\bigcirc			(,,)
9												(D)
9												(D)
24	_											(A)
10	9					Ŏ		_	Ŏ			(,,,
19					* 629	Ŏ	1 000		Ŏ	1 000]
10	9.525					Q			Q			
10									0			
12	10					$\vdash \bigcirc$			$\vdash \bigcirc$			
12												-
12 24 6 0.3 * 6901 1 000 120 1 000 49 28 8 0.3 * 6001 1 000 210 1 000 87 32 10 0.6 * 6201 900 290 900 110 24 5 0.3 * 6802 1 1000 88 1 1000 35 28 7 0.3 * 6902 930 180 930 74 32 9 0.3 * 6002 850 230 850 95 35 11 0.6 * 6202 800 320 850 130 26 5 0.3 * 6803 930 110 930 44 30 7 0.3 * 6803 850 190 850 78 35 10 0.3 * 6003 760 250 760 100 40 12 0.6 * 6203 700 400 700 100 40 12 0.6 * 6203 700 400												1
12	40								\sim			1
15	12	28	8			Ŏ		210	Ŏ			
15									0			
15									0			
35	15											(D)
17						$\vdash \bowtie$						(D)
17												
17	47					\sim			\sim			
20	17			0.3		Ō		250	Ō]
20									Q			
20									$\bigcup_{i=1}^{n}$			
47 14 1 * 6204 590 540 590 210 37 7 0.3 * 6805 640 190 640 76 42 9 0.3 * 6905 590 290 590 110 47 12 0.6 * 6005 550 420 550 170 52 15 1 * 6205 510 590 510 230 42 7 0.3 6806 550 190 550 77 47 9 0.3 6906 510 300 510 120 55 13 1 * 6006 470 560 470 220 62 16 1 * 6206 430 820 430 330 (B) 35 62 14 1 * 6007 410 680 410 270 72 17 1.1 6207 370 1090 370 430 60 68 15 1 6008 370 <	20											
25												
25									\sim			
47 12 0.6 \$6005 550 420 550 170 52 15 1 \$6205 510 590 510 230 42 7 0.3 6806 550 190 550 77 47 9 0.3 6906 510 300 510 120 55 13 1 \$6006 470 560 470 220 62 16 1 \$6206 430 820 430 330 (B) 35 62 14 1 \$6007 410 680 410 270 72 17 1.1 6207 370 1090 370 430 68 15 1 6008 370 710 370 280 (A)	05								-			1
30 42 7 0.3 6806 550 190 550 77 (A) 47 9 0.3 6906 510 300 510 120 (A) 55 13 1 \$6006 470 560 470 220 62 16 1 \$6206 430 820 430 330 (B) 35 62 14 1 \$6007 410 680 410 270 72 17 1.1 6207 370 1090 370 430 68 15 1 6008 370 710 370 280 (A)	25		12	0.6			550		Ó	550		
30					* 6205				Q			
30									$+ \bigcirc$			(A)
62 16 1 * 6206 430 820 430 330 (B) 35 62 14 1 * 6007 410 680 410 270 72 17 1.1 6207 370 1 090 370 430 68 15 1 6008 370 710 370 280 (A)	30								$\vdash \bowtie$,
35 62 14 1 * 6007									$\vdash \times \vdash$			(B)
72 17 1.1 6207 370 1 090 370 430 (A)									$\vdash \overset{\smile}{\sim}$			(0)
40 68 15 1 6008 370 710 370 280 (A)	35								l ŏ			
	40	68		1				710	Ŏ			(A)
	40	80	18	1.1	6208		330	1 240		330	490	

Shielded (example)

Mark: O Available on a production-by-order basis.

Notes (1) The actual designation may differ from the inquiry designation. [1000] indicates the basic designation.

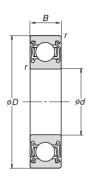
Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on Page A10 for further details.

2. Shieled bearings are standard.

⁽²⁾ An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

⁽³⁾ Limiting load values are for reference only; they are not guaranteed.

13. KPM Grease-Packed Bearings


Available on a productionby-order basis

Page A51-A52

Inquiry designation⁽¹⁾

Type of inquiry designation	KPM Grease-Packed Bearing
(A)	0000 LZZ-H KPM
(B)	0000 -H-20ZZU76A KPM

(B)		шш -H-20 Z	ZU/6A K	PIVI				
	Boundary (dimensions						
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.)	Basic designation [©]	Availability(3)	Limiting speed (reference value) (min-1)	Limiting load ⁽⁴⁾ (reference value) (N)	Type of inquiry designation
	9	4	0.1	684	0	1 000	27	
4	11	4	0.15	694	Ŏ	1 000	40	
4	12	4	0.2	604		1 000	40	
	13	5	0.2	624	Q	1 000	55]
	11	5	0.15	685	<u>Q</u>	1 000	30	
5	13	4	0.2	695		1 000	45	-
	14 16	5 5	0.2 0.3	605 625		1 000	56 73	(A)
	13	5	0.3	686		1 000	46	(A)
	15	5	0.2	696	\sim	1 000	56	1
6	17	6	0.3	606	Ŏ	1 000	96	
	19	6	0.3	626	Ó	1 000	99	
	14	5	0.15	687	Q	1 000	50	
7	17	5	0.3	697	Q	1 000	68	
	19	6	0.3	607		1 000	99	(D)
	22 16	7 5	0.3 0.2	* 627 688		1 000	140 53	(B)
_	19	6	0.2	698		1 000	95	(A)
8	22	7	0.3	* 608	Ŏ	1 000	140	
	24	8	0.3	* 628	Ŏ	1 000	140	(B)
	17	5	0.2	* 689		1 000	56]
9	20	6	0.3	699	Q	1 000	100	(A)
J	24	7	0.3	* 609	0	1 000	140	_
9.525	26 22.225	8 7.142	0.6	* 629 * R6	$\vdash 2$	1 000	190	
9.525	19	5	0.4	* R6 * 6800		1 000	140 73	-
	22	6	0.3	* 6900	(C3)	1 000	110	
10	26	8	0.3	* 6000	(C3)	1 000	190	
	30	9	0.6	* 6200	(C3)	1 000	210]
	21	5	0.3	* 6801	(C3)	1 000	82	
12	24	6	0.3	* 6901	(C3)	1 000	120	
	28 32	10	0.3	* 6001	(C3)	1 000	210	1
	24	5	0.6	* 6201 * 6802	(C3) (C3)	1 000	290 88	-
	28	7	0.3	* 6902	(C3)	1 000	180	-
15	32	9	0.3	* 6002	(C3)	1 000	230	(B)
	35	11	0.6	* 6202	(C3)	1 000	320] ` ´
	26	5	0.3	* 6803	(C3)	1 000	110	
17	30	7	0.3	* 6903	O(C3)	1 000	190	
	35 40	10 12	0.3 0.6	* 6003 * 6203	(C3)	1 000 1 000	250 400	-
	32	7	0.8	* 6804	(C3) (C3)	1 000	170	-
	37	9	0.3	* 6904	(C3)	1 000	270	-
20	42	12	0.6	* 6004	(C3)	1 000	390	
	47	14	1	* 6204	(C3)	1 000	540]
	37	7	0.3	* 6805	(C3)	1 000	190	
25	42	9	0.3	* 6905	O(C3)	1 000	290	
	47	12	0.6	* 6005	(C3)	1 000	420	-
-	52 42	15 7	0.3	* 6205 6806	(C3)	1 000	590 190	
	42	9	0.3	6806 6906	$\vdash \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1 000	300	(A)
30	55	13	1	* 6006	(C3)	1 000	560	
	62	16	1	* 6206	(C3)	1 000	820	(B)
35	62	14	1	* 6007	(C3)	1 000	680	1
	72	17	1.1	6207		930	1 090	
40	68	15	1	6008	\vdash \bigcirc \vdash	920	710	(A)
	80	18	1.1	6208		830	1 240	

Shielded (example)

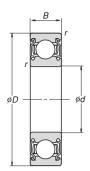
Mark: Available on a production-by-order basis.

Notes (1) The actual designation may differ from the inquiry designation. [1000] indicates the basic designation.

- (2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
- (3) Bearings that may have a radial internal clearance of C3 are indicated by (C3) next to the availability mark.
- (4) Limiting load values are for reference only; they are not guaranteed.

Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on Page A10 for further details.

14. YS Bearing with Spacer Joints


Available on a productionby-order basis

Page A53-A54

Inquiry designation⁽¹⁾

Type of inquiry designation	YS Bearing with Spacer Joints
(A)	0000 LZZC4-HMSS2 GVS
(B)	U- 000 -H-20S4MYSV01ZZC4** GVS

Bore Outside diameter Width Chamfer dimension designation designat	imiting load ⁽³⁾ ference value) (N) Type of inquiry designation
6 17 6 0.3 606 1 000	38 (A)
7 19 6 0.3 607 1 000	39
8 22 7 0.3 * 608	56 (B)
24 8 0.3 * 628 1000	57
20 6 0.3 699 1 000	42 (A)
9 24 7 0.3 * 609 1 000	57
26	78
19 5 0.3 * 6800 1 000	29
10 22 6 0.3 * 6900	45
26 8 0.3 * 6000 1 000	78
	87
24 6 0.3 * 6901 1 000	49
12 28 8 0.3 * 6001 1 000	87
32 10 0.6 * 6201 900	110
24 5 0.3 * 6802 1 000	35
15 28 7 0.3 * 6902	74
32 9 0.3 * 6002 0 850	95 (B)
35 11 0.6 * 6202 0 800	130
30 7 0.3 * 6903 0 850	78
17 35 10 0.3 * 6003 760	100
32 7 0.3 * 6804 760	68
37 9 0.3 * 6904 700	100
20 42 12 0.6 * 6004 640	150
47 14 1 * 6204 590	210
37 7 0.3 * 6805 640	76
42 9 0.3 * 6905 590	110
25 47 12 0.6 * 6005 550	170
52 15 1 * 6205 510	230
47 9 0.3 6906 510	120 (A)
30 55 13 1 * 6006 470	220
62 16 1 * 6206 430	330
35 62 14 1 * 6007	270
72 17 1.1 * 6207 370	430 (B)
40 68 15 1 * 6008 370	280
40 80 18 1.1 * 6208 330	490
45 75 16 1 * 6009 330	350

Mark: Available on a production-by-order basis.

Notes (1) The actual designation may differ from the inquiry designation. [100] indicates the basic designation.

(2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring bearing steel material.

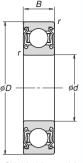
(3) Limiting load values are for reference only; they are not guaranteed.

Remarks 1. The radial internal clearances for the bearings on this Page are listed below. See the radial internal clearance tables on Page A10 for further details.

Bore diameters smaller than 10 mm: 0.014 mm to 0.029 mm.

Bore diameters of 10 mm or larger: C4

2. Shieled bearings are stnadard.


15. SJ Bearings

Available on a productionby-order basis

Bearings Specification Tech. Data Page A55-A56

Inquiry designation⁽¹⁾

U- 000 -H-20S4MBSJ06ZZ GVS

Shielded (example)

	Boundary of	dimensions					Limiting	Radial
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation ⁽²⁾	Availability	Limiting speed (reference value) (min ⁻¹)	load [®] (reference value) (N)	internal clearance (min)
8	22	7	0.3	* 608	0	1 000	56	0.037-0.080
10	26	8	0.3	* 6000		1 000	78	0.037-0.080
10	30	9	0.6	* 6200	0	1 000	87	0.037-0.060
12	28	8	0.3	* 6001		1 000	87	0.045-0.090
12	32	10	0.6	* 6201		900	110	0.045-0.090
15	32	9	0.3	* 6002		850	95	0.045-0.090
	35	11	0.6	* 6202		800	130	0.045-0.090
17	35	10	0.3	* 6003		760	100	0.045-0.090
17	40	12	0.6	* 6203		700	160	0.045-0.090
20	42	12	0.6	* 6004	0	640	150	0.048-0.096
	47	14	1	* 6204	0	590	210	0.040-0.096
25	52	15	1	* 6205		510	230	0.053-0.106
30	55	13	1	* 6006		470	220	0.053-0.106

Mark: Available on a production-by-order basis.

Notes (1) The actual designation may differ from the inquiry designation. [1000] indicates the basic designation.

Remarks: Shielded bearings are standard.

⁽²⁾ An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

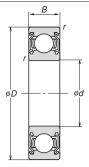
⁽³⁾ Limiting load values are for reference only; they are not guaranteed.

16. Food Grade Grease-Packed Bearings

Available on a production by-order basic

Bearings Specifications Page A57–A58

Inquiry designation⁽¹⁾


Type of inquiry designation	RLS Grease	BL2 Grease for High Temperature
(A)	0000 LZZ-H RLS	0000 LZZ-H BL2
(B)	0000 -H-20ZZU23 RLS	0000 -H-20ZZU23 BL2

◆ See the Molded-Oil™ Bearings with food grade lubricant on Page A16.

Boundary dimensions				NSF H1						
Bore diameter	Outside diameter	Width	Chamfer dimension	Basic	`	grease	BL2 g	grease mperature	Limiting load ⁽⁴⁾ (reference	Type of inquiry
d (mm)	D (mm)	B (mm)	(min.) <i>r</i> (mm)	designation ⁽²⁾	Availability	Limiting speed ⁽³⁾ (reference value) (min ⁻¹)	Availability	Limiting speed(3) (reference value) (min-1)	value) (N)	designation
	9	4	0.1	684	0	37,100	0	31,800	27	
4	11	4	0.15	694	0	33,600	0	28,800	40	
4	12	4	0.2	604	0	33,600	0	28,800	40	
	13	5	0.2	624	0	28,000	0	24,000	55	
	11	5	0.15	685		31,500	0	27,000	30	
5	13	4	0.2	695	0	30,100	0	25,800	45	1
Э	14	5	0.2	605	0	28,000	0	24,000	56	
	16	5	0.3	625	\circ	25,200	\circ	21,600	73	(A)
	13	5	0.15	686	\circ	28,000	\circ	24,000	46	
6	15	5	0.2	696	\circ	28,000		24,000	56	
O	17	6	0.3	606		26,600	\circ	22,800	96	
	19	6	0.3	626	0	22,400	0	19,200	99	
	14	5	0.15	687	0	28,000	0	24,000	50	
7	17	5	0.3	697	0	25,200	0	21,600	68	
1	19	6	0.3	607	0	25,200	0	21,600	99	
	22	7	0.3	* 627	0	21,000	0	18,000	140	(B)
	16	5	0.2	688	0	25,200	0	21,600	53	(4)
8	19	6	0.3	698		25,200		21,600	95	(A)
0	22	7	0.3	* 608		23,800	0	20,400	140	
	24	8	0.3	* 628	0	19,600	0	16,800	140	(B)
	17	5	0.2	* 689	0	25,200	0	21,600	56	
9	20	6	0.3	699		23,800		20,400	100	(A)
9	24	7	0.3	* 609	0	22,400	0	19,200	140	
	26	8	0.9	* 629	\circ	19,600	\circ	16,800	190	
9.525	22.225	7.142	0.4	* R6	\circ	22,400	\circ	19,200	140	
	19	5	0.3	* 6800	\circ	23,800	\circ	20,400	73	
10	22	6	0.3	* 6900	\circ	22,400	\circ	19,200	110	
10	26	8	0.3	* 6000	\circ	21,000	\circ	18,000	190	
	30	9	0.6	* 6200	\circ	16,800	\circ	14,400	21	
	21	5	0.3	* 6801	\circ	22,400	\circ	19,200	82	(B)
12	24	6	0.3	* 6901	0	21,000	0	18,000	120	
14	28	8	0.3	* 6001	0	19,600	0	16,800	210	
	32	10	0.6	* 6201	0	14,000	0	12,000	290	
	24	5	0.3	* 6802	0	19,600	0	16,800	88	
15	28	7	0.3	* 6902	0	18,200	0	15,600	180	1
15	32	9	0.3	* 6002	0	16,800	0	14,400	230	
	35	11	0.6	* 6202	0	14,000		12,000	320	

of SPACEA™ Series Bearings

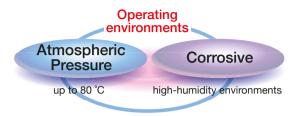
Shielded (example)

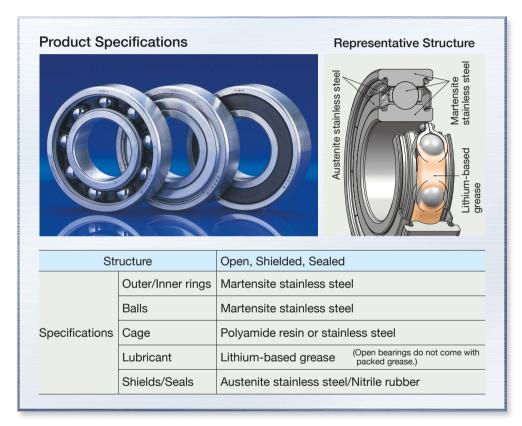
	Boundary of	dimensions				NSF	F H1		1.1	
Bore diameter	Outside diameter	Width	Chamfer dimension	Basic	RLS	grease		grease emperature	Limiting load ⁽⁴⁾ (reference	Type of inquiry
d (mm)	D (mm)	<i>B</i> (mm)	(min.) <i>r</i> (mm)	designation ⁽²	Availability	Limiting speed ⁽³⁾ (reference value) (min ⁻¹)	Availability	Limiting speed ⁽³⁾ (reference value) (min ⁻¹)	value) (N)	designation
	26	5	0.3	* 6803	0	18,200		15,600	110	
17	30	7	0.3	* 6903	0	16,800	0	14,400	190	
17	35	10	0.3	* 6003	0	15,400	0	13,200	250	
	40	12	0.6	* 6203		11,900		10,200	400	
	32	7	0.3	* 6804	0	15,400		13,200	170	
20	37	9	0.3	* 6904		13,300		11,400	270	
20	42	12	0.6	* 6004		12,600		10,800	390	
	47	14	1	* 6204		10,500		9,000	540	(B)
	37	7	0.3	* 6805	0	12,600		10,800	190	
25	42	9	0.3	* 6905	0	11,200	0	9,600	290	
25	47	12	0.6	* 6005	0	10,500	0	9,000	420	
	52	15	1	* 6205		9,100		7,800	590	
30	55	13	1	* 6006	0	9,100		7,800	560	
30	62	16	1	* 6206	0	7,700	0	6,600	820	
35	62	14	1	* 6007		7,700		6,600	680	
ან 	72	17	1.1	6207		6,650		5,700	1090	
40	68	15	1	6008	0	7,000		6,000	710	(A)
40	80	18	11	6208		5 250		4 500	1240]

 $\label{eq:mark:optimize} \mbox{Mark:} \bigcirc \mbox{Available on a production-by-order basis}.$

Notes (1) The actual designation may differ from the inquiry designation. [1000] indicates the basic designation.

- (2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
- (3) The limiting speeds listed are for shielded bearings. Please contact NSK for the limiting speeds of bearings with rubber contact seals.
- (4) Limiting load values are for reference only; they are not guaranteed.


Remarks 1. The radial internal clearance for the bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on Page A10 for further details.


2. Shielded bearings are standard.

1. Stainless Steel Bearings

Pages A11–A14 Dimensions, accuracy and availability of bearings.

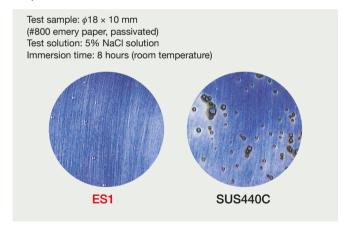
Stainless steel bearings, the standard products of the NSK SPACEA[™] Series for special environments, are suitable for high-humidity environments.

Applications: Equipment used in high-humidity environments: food processing, cleaning, chemical processing, fishery equipment

- For use in normal atmospheric conditions only.
- Bearings stocked as standard inventory items are prepacked with NS7 (lithium-based) grease.
- Keep bearings packed until immediately before mounting.
- See the tables on Pages A11 through A14 for limiting loads and limiting rotational speeds.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

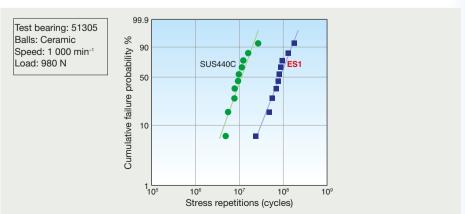
- For use at normal atmospheric pressure, with grease lubrication
- Higher corrosion resistance than bearing steel
- Open, shielded, and contact sealed bearings are available (see A11–A14)

NSK Highly Corrosion-Resistant ES1 Stainless Steel


Performance

Material	Material Hardness, HRC Corrosion resistance ⁽¹⁾		Features
NSK highly corrosion-resistant ES1 stainless steel	58–62	0	NSK-developed steel
Martensite stainless steel SUS440C	58–62	Δ	Ordinary stainless steel
Bearing steel SUJ2	60–64	×	Ordinary steel for bearings

Note (1) Comparative assessment between three kinds of materials


Corrosion resistance of ES1

Outperforms SUS440C in corrosion resistance

Salt spray test (JIS Z 2371) Test solution: 5% NaCl solution Test time: 1 hour Temperature: 35 °C

• Immersion rolling fatigue life Outperforms SUS440C in durability

2. Stainless Steel Angular Contact Ball Bearings

For use in atmospheric pressure and cleanroom environments

For use in vacuum, cleanroom, and high-temperature environments

Page A15

Dimensions, ac and availability bearings

Features

- Outperforms standard bearing steel in terms of corrosion resistance.
- Achieves high running accuracy to ISO tolerance class P5.
- Supports universal matching with light preload when mounted in a face-to-face (DF) arrangement or back-to-back (DB) arrangement.
- Stainless steel angular contact ball bearings come in two variations: one set is suitable for cleanroom and normal atmospheric pressure conditions while the other is suited for cleanroom, vacuum, and high-temperature environments.

Specifications of Bearings

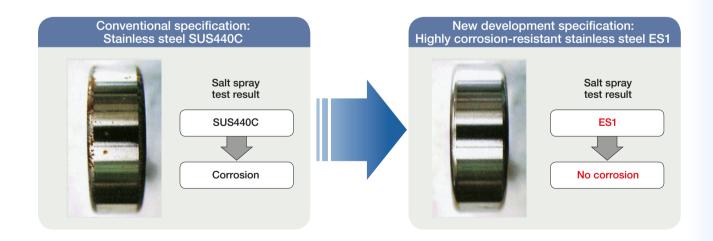
Application environment		Atmospheric pressure and cleanroom environments	Vacuum, cleanroom and high-temperature environments		
Contact angle		30° (A) or 25° (A5)			
Material	Outer/Inner rings, Balls	Martensite stainless steel			
iviateriai	Cage	Polyamide resin (TYN)	Natural PEEK resin (T4N) or Stainless steel		
Arrangement		Universal arrangement (single row)			
Preload		Light preload			
	Accuracy	P5			

- Keep bearings packed until immediately before mounting.
- For cleanroom and normal environment bearings, first clean the bearings to remove the anti-corrosion agent before applying a suitable grease.
- Vacuum, cleanroom, and high-temperature environment bearings have already been degreased and cleaned. Please apply a suitable grease.
- See the tables on Page A15 for limiting loads and limiting rotational speeds.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

3. Stainless Steel Self-Aligning Ball Bearings

Featuring highly corrosion-resistant ES1 stainless steel

Page A15

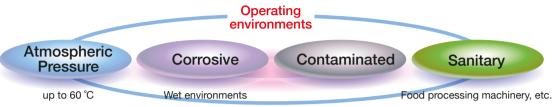

Dimensions, accuracy and availability of bearings.

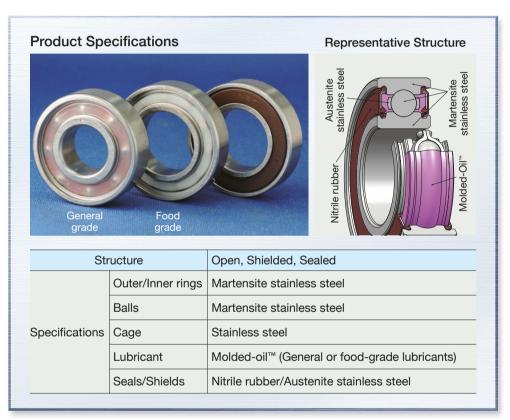
Applications: Flat panel display cleaning equipment, film cleaning systems, etching equipment, conveyance equipment

Features

- Highly resistant to corrosion thanks to ES1: a highly corrosion-resistant stainless steel.
- Self-aligning with the ability to accommodate misalignment of the axis and housing from 4 to 7 degrees.

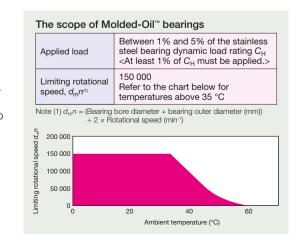
- Keep bearings packed until immediately before mounting.
- Clean the bearings to remove the anti-corrosion agent before applying a suitable grease.
- See the tables on Page A15 for limiting loads and limiting rotational speeds.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

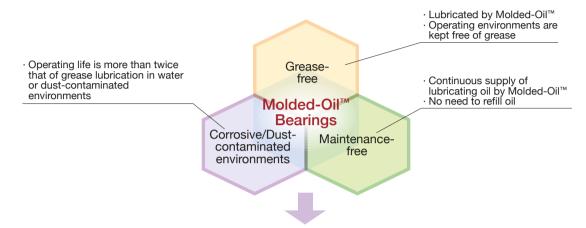

Corrosive, Sanitary and Dust-Contaminated Environments


4. Molded-Oil™ Bearings

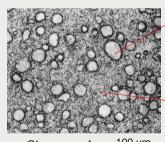
Page A16 Dimensions, accuracy and availability of bearings.

Molded-Oil[™] bearings, made of stainless steel, are lubricated with an original oil-containing material, Molded-Oil[™], and are suitable for corrosive and contaminated environments at atmospheric pressure.


Food grade lubricants are also available.


Applications: Semiconductor cleaning equipment, FPD cleaning equipment, hard-disk cleaning equipment, food processing machinery, various conveyor lines

- For use in normal atmospheric conditions only.
- Because the solid lubricant used in these bearings will melt at a temperature of 120 °C, take care not to exceed temperatures of 100 °C when heating this bearing during the shrink-fit process for mounting.
- A radial load is required for the bearings to properly rotate. The minimum radial load to maintain proper rotation is at least 1 % of the basic dynamic load rating.
- Keep bearings packed until immediately before mounting.
- lacktriangle The scope of application (applied load, limiting $d_{\rm m}n$ value) is listed in the table to the right.
- Avoid exposure to organic solvents with a degreasing effect.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.



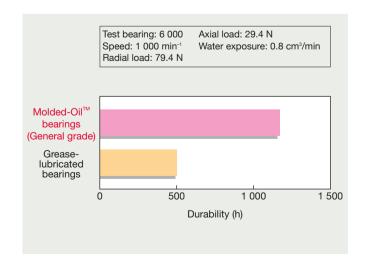
- Molded-Oil[™] provides continuous supply of lubrication oil
- No grease or oil refilling keeps operating environments clean
- Operating life more than twice that of grease lubrication in water or dust-contaminated environments
- Contact-seal bearings available in standard inventory (see Page A16)
- NSF H1 food-grade lubricants for food processing machinery also available.

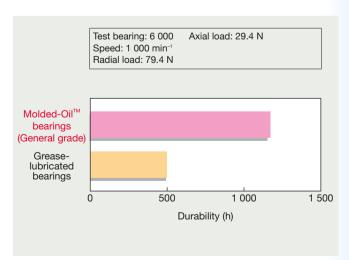
Performance

Close-up of Molded-Oil™

Portion containing high proportion of polyolefin

Polyolefin is used for packaging food in supermarkets, replacing dioxin-generating vinyl chloride.

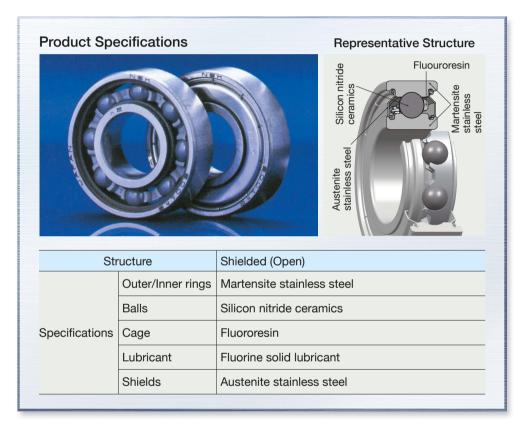

Portion containing high proportion of lubricating oil


Molded-Oil comes in both general-grade (mineral-oil based) and NSF H1* food grade variants.

*NSF Category Code H1: Incidental food contact

Durability under wet and water-immersed conditions

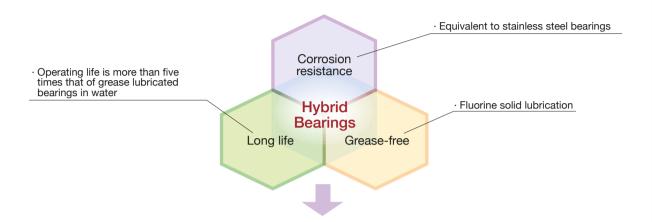
Molded-Oil™ bearings have an operating life twice that of grease-lubricated bearings.


5. Hybrid Bearings

Page A17

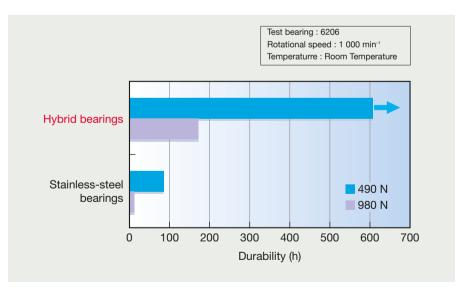
Dimensions, accuracy and availability of bearings

Hybrid bearings, combining ceramic balls and a fluororesin self-lubricating cage, are suitable for corrosive environments at atmospheric pressure.



Applications: Devices and conveyor lines used in water-spray or other wet environments such as food processing and fishery equipment

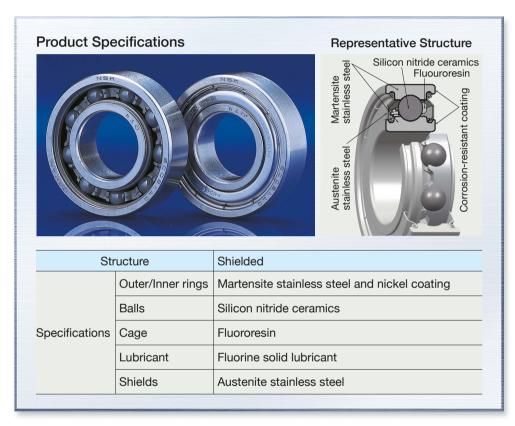
- Keep bearings packed until immediately before mounting.
- See the tables on Page A17 for limiting loads and limiting rotational speeds.
- A special clearance is adopted for the radial internal clearance. See the tables on Page A17.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.


- Grease-free, fluorine-based solid lubricant
- Operating life more than five times that of stainless steel bearings in water-immersed environments

Performance

Durability in water-immersed environments

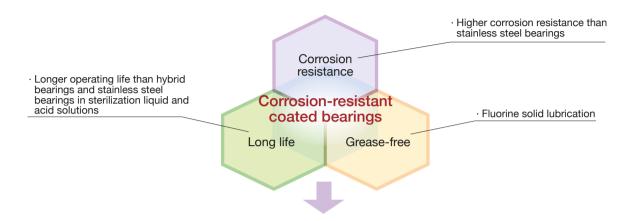
Hybrid bearings have an operating life more than five times that of stainless steel bearings.


6. Corrosion-Resistant Coated Bearings

Page A17

Dimensions, accuracy and availability of bearings

Corrosion-resistant coated bearings are coated with a nickel coating on the outer and inner rings to enhance corrosion resistance and durability, and are suitable for corrosive environments at atmospheric pressure.



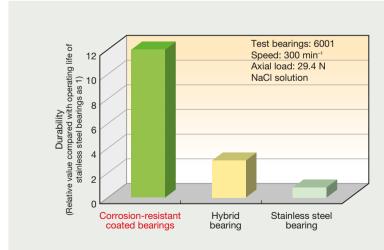
Applications: Semiconductor/FPD/HD cleaning equipment, etching equipment, food processing machinery, various conveyor lines

- Keep bearings packed until immediately before mounting.
- See the tables on Page A17 for limiting loads and limiting rotational speeds.
- A special clearance is adopted for the radial internal clearance. See the tables of SPACEA™ bearing nomenclature on Page A17.
- Dimensional tolerances of the bore and the outside diameter for corrosion-resistant coated bearings may deviate from the JIS Class 0 standard for coating thickness by a maximum of 5 µm in diameter.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

- Grease-free, fluorine-based solid lubricant
- Higher corrosion-resistance and longer life than stainless steel bearings or hybrid bearings
- Resistant to sterilization liquids such as hydrogen peroxide and oxonia

Performance

Immersed in a sodium hypochlorite solution Concentration: 150 ppm


Stainless steel bearing SUS440C

Corrosion-resistant coated bearings

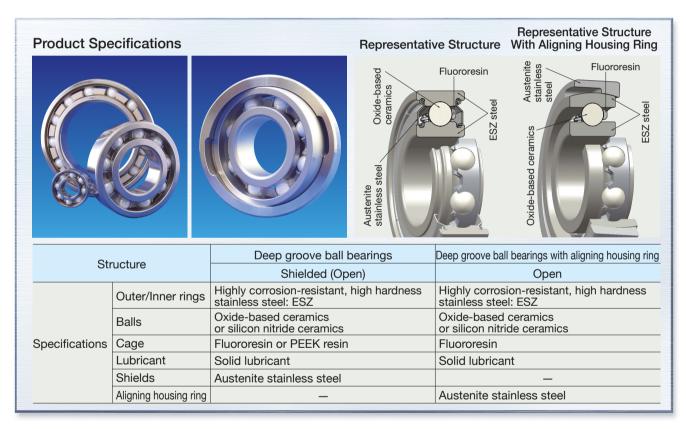
Corrosion resistance in sodium hypochlorite solution

While stainless steel bearings rusted in 10 hours, corrosion-resistant coated bearings did not rust, even after 72 hours.

Durability in NaCl solution

In a NaCl solution, corrosion-resistant coated bearings have an operating life more than four times that of hybrid bearings, and more than 12 times that of stainless steel bearings.

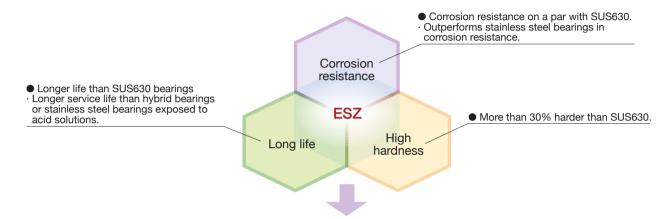
7. ESZ Bearings


Page A18

Dimensions, accuracy and availability of bearings.

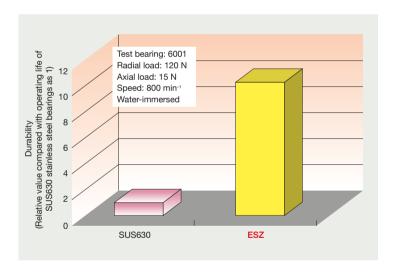
ESZ bearings are highly corrosion-resistant, high-hardness stainless steel bearings offering corrosion resistance on a par with SUS630 and over 30% more hardness than SUS630.

The bearings are suitable for corrosive environments at atmospheric pressure.

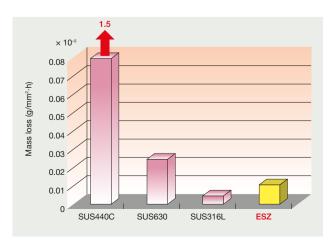


Applications: High function film conveyor, cleaning equipment, food processing machinery, various conveyor lines

- Keep bearings packed until immediately before mounting.
- See the tables on Page A18 for limiting loads and limiting rotational speeds.
- C3 is the standard radial internal clearance.
- When bearings with aligning housing rings are used under radial loads, ensure that the radial load position is not on the notches (in two spots).
- The fit between the aligning housing ring and housing should be loose with a sufficient amount of clearance to ensure smooth, self-aligning performance.
- Please contact NSK if a bearing with an aligning housing ring will be mounted to a vertical shaft.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.



- Product lineup includes standard deep groove ball bearings and deep groove ball bearings with an aligning housing ring.
- Corrosion resistance on par with SUS630. Able to withstand exposure to sodium hypochlorite solutions.
- Over 30% harder than SUS630.
- Able to accommodate bending associated with wider rollers and allows for misalignment of the shaft and housing.

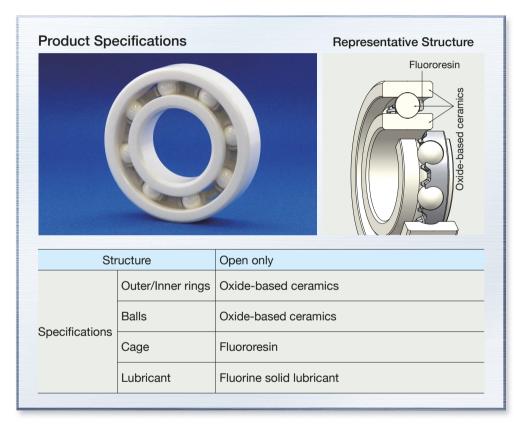


Performance

Durability in water-immersed conditions

Results of 5% sulfuric acid immersion test

Results of sodium hypochlorite solution immersion test


Corrosive Environments and Non-Magnetic Requirements

8. All-Ceramic Bearings

Page A19 Dimensions, accuracy and availability of bearings.

With ceramic outer/inner rings and balls, all-ceramic bearings have self-lubricating fluororesin cages and are suitable for corrosive environments and non-magnetic requirements at atmospheric pressure.

Applications: Corrosive environments: Semiconductor production machinery, chemical processing equipment, metal plating equipment Non-magnetic requirements: Electron beam drawing devices, electron beam exposure equipment, inspection equipment

- Keep bearings packed until immediately before mounting.
- See the tables on Page A19 for limiting loads and limiting rotational speeds.
- Due to the fragility of ceramic materials, please observe the following precautions:
 - ★Do not drop or strike the bearing.
 - ★Allow for sufficient clearance when installing the bearing.
 - ★Do not strike the bearing with a hammer or other tool when installing the bearing to a shaft or axlebox.
- A special clearance is adopted for the radial internal clearance. See the tables of SPACEA™ bearing nomenclature on Page A19.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

- Grease-free, fluorine-based solid lubricant
- Higher corrosion resistance and longer life than conventional stainless steel bearings and hybrid bearings
- Completely non-magnetic
- Lower in cost than other ceramics
 Outperforms silicon nitride ceramics

 High corrosion resistance
 immersed conditions

 Oxide-Based Ceramics

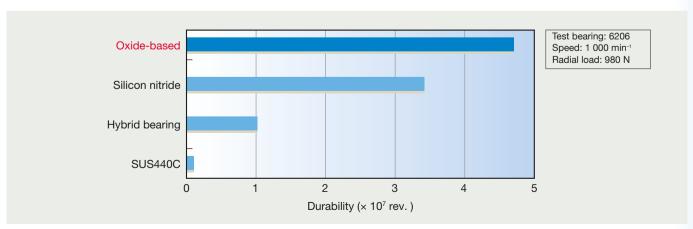
 Non-magnetic

 Non-magnetic

Performance

Comparison of performance and cost

Oxide-based ceramics are:


- ★More corrosion-resistant than stainless steel SUS440C or silicon nitride ceramics (Si₃N₄)
- ★Lower in price than other ceramics

Evaluation item		Ceram	Stainless steel	
		Oxide-based Silicon nitride		SUS440C
	3% Sulfuric acid (room temperature)	0	Δ	×
Corrosion resistance	8% Hydrochloric acid (room temperature)	0	Δ	×
	5% Fluoric acid (room temperature)	Δ	Δ	×
Relative permeability		1.001 or less	1.001 or less	Ferromagnetic body

Corrosion resistance evaluation \cdots : Slightly corroded \triangle : Partially corroded \times : Corroded

Durability in water-immersed conditions

Oxide-based ceramics are 20 times more durable than SUS440C under water-immersed conditions.

Corrosive Environments (Strong Acids and Alkalis)

9. Aqua-Bearing™

Page A20 Dimensions, accuracy and availability of bearings.

Aqua-Bearing[™] features a special fluororesin for outer/inner rings and cage equipped to meet a broad range of applications in water, alkali and strong acid environments. Aqua-Bearing[™] is suitable for corrosive environments at normal pressures.

Applications: Semiconductor cleaning equipment, FPD cleaning equipment, hard-disk cleaning equipment, metal plating equipment, etching equipment, food processing machinery

- For use in normal atmospheric conditions only.
- Keep bearings packed until immediately before mounting.
- See the tables on Page A20 for limiting loads and limiting rotational speeds.
- The Aqua-Bearing™ adopts special standards for dimensional accuracy of the inner ring bore diameter, outside diameter of the outer ring, and radial internal clearance. See the tables on Page A20.
- Note that the bearing fit is large due to the linear expansion coefficient of the special fluororesin material $(\alpha = 1.7 \times 10^{-4})^{\circ}$ C).
- These bearings may not be usable with certain liquid medicines or under certain concentrations.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

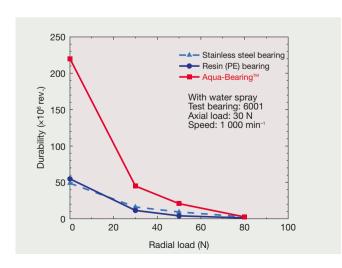
- High corrosion resistance equivalent to that of ceramic bearings
- Excellent durability in acid solvents: over 1 000 times more resistant than SUS440C stainless bearings and over five times more resistant than conventional resin (PE) bearings
- Special self-lubricating fluororesin eliminates need for grease/oil refilling.

Performance

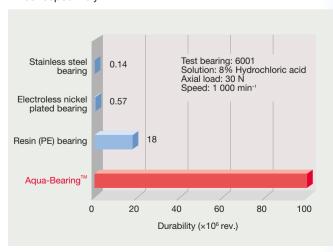
Comparison of corrosion resistance

Corrosion resistance equal to or higher than all-ceramic bearings (oxide-based)

	Aqua-Bearing™	PE	All-ceramic bearings (Oxide-based)
5% Sulfuric acid	Δ	×	Δ
8% Hydrochloric acid	Δ	X	Δ
Aqua regalis	0	×	0
15% Acetic acid	0	Δ	0
70% Aqua fortis	Δ	X	Δ
70% Phasphoric acid	0	Δ	0
40% Hydrogen peroxide solution	0	Δ	0


Corrosion resistance evaluation

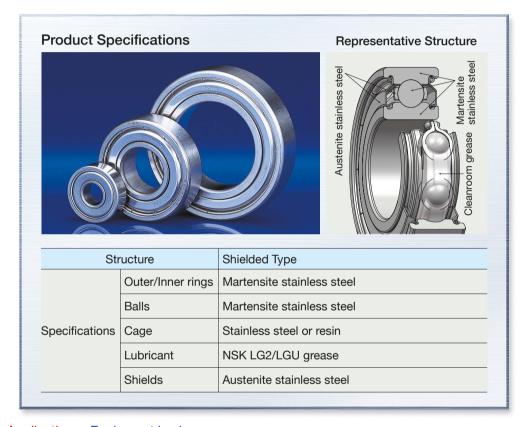
O: Not corroded


 \times : Corroded

Results of water-spray durability tests

Remarkable durability under light-load conditions.

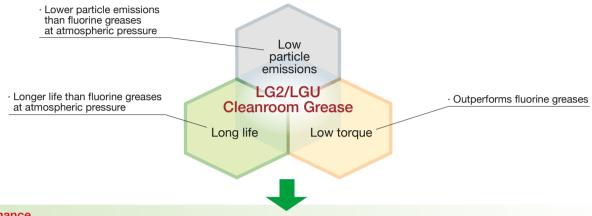
• Results of durability tests in strong acid solution Durability is higher than that of SUS440C bearings and conventional resin bearings and more than 1 000 times and five times respectively.



10. LG2/LGU Grease-Packed Bearings

Pages A21–A22 Dimensions, accuracy and availability of bearings.

LG2/LGU Cleanroom grease-packed stainless steel bearings are suitable for cleanroom environments at atmospheric pressure.

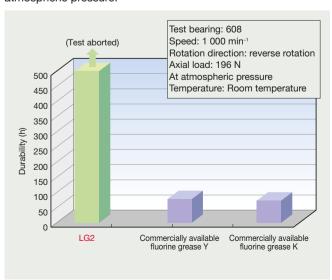


Applications: Equipment in cleanrooms

- LG2/LGU grease products are for use in normal atmospheric conditions only.
- Keep bearings packed until immediately before mounting.
- See the tables on Pages A21 and A22 for limiting loads and limiting rotational speeds.
- Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes). Cleanliness may
 vary depending on operating conditions, surrounding components, and other factors.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

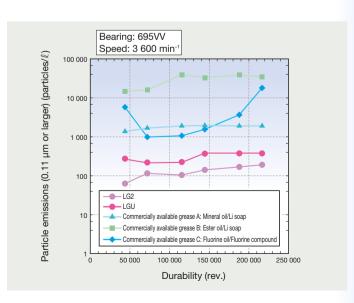
- Cleanroom grease lubrication for use at atmospheric pressure only
- Lower particle emissions, lower torque, longer operating life, and higher corrosion resistance than commercially available fluorine greases
- LGU grease is free of metallic elements

Performance


Properties of grease

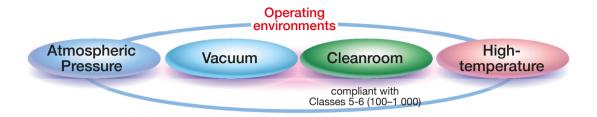
Operating environment	For use at atmospheric pressure only				
Product	LG2	LGU			
Base oil	Mineral oil and synthetic hydrocarbon oil	Synthetic hydrocarbon oil			
Thickener Lithium soap		Diurea			
Kinematic viscosity (mm²/s, 40 °C)	32	96			
Consistency	199	201			
Maximum operating temperature (°C)	up to 70	up to 120			

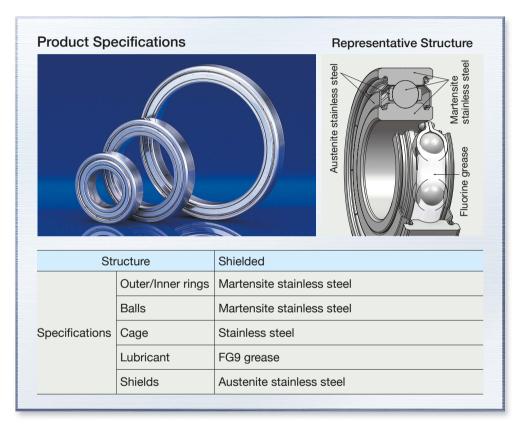
LGU grease is free of metallic elements


Results of durability tests

LG2/LGU grease feature longer life than other grease at atmospheric pressure.

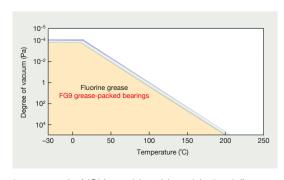
Results of particle emission tests


LG2/LGU grease limit particle emissions at atmospheric pressure.

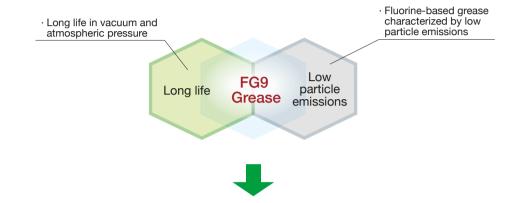


11. FG9 Fluorine Grease-Packed Bearings

Pages A21–A22 Dimensions, accuracy and availability of bearings.

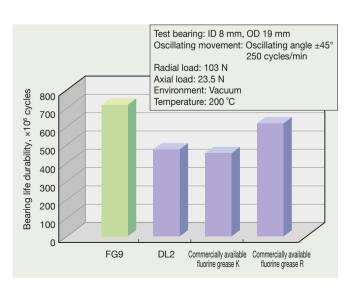

FG9 fluorine grease-packed stainless steel bearings are suitable for cleanroom environments at atmospheric pressure up to vacuum.

Applications: Semiconductor/ organic electro-luminescence/ FPD manufacturing equipment, hard disk manufacturing equipment


- Keep bearings packed until immediately before mounting.
- The scope of application (degree of vacuum, temperature) is listed in the table to the right.
- See the tables on Pages A21 and A22 for limiting loads and limiting rotational speeds.
- Ensure an optimum radial internal clearance for maximum rotational performance by applying a fit that considers bearing load, operating temperatures, materials of the shaft and/or housing (due to coefficient of linear expansion), etc.
- Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes). Cleanliness may vary depending on operating conditions, surrounding components, and other factors.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

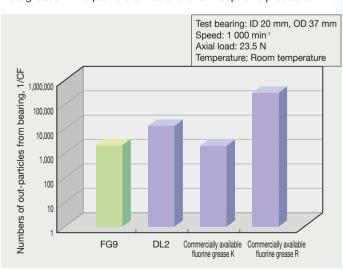
- Fluorine grease lubrication
- More suitable for vacuums and at higher temperatures than LG2/LGU greases
- Lower particle emissions and longer life than conventional fluorine greases
- Satisfies EU POPs regulations for restrictions on PFOA*

*Annex I to Regulation (EU) 2019/1021


Performance

Properties of grease

Operating environments	From atmospheric pressure to vacuum			
Name	FG9			
Base oil	Fluorine oil			
Thickener	PTFE			
Kinematic viscosity (mm²/s, 40 °C)	200			
Maximum operating temperature (°C)	up to 200			

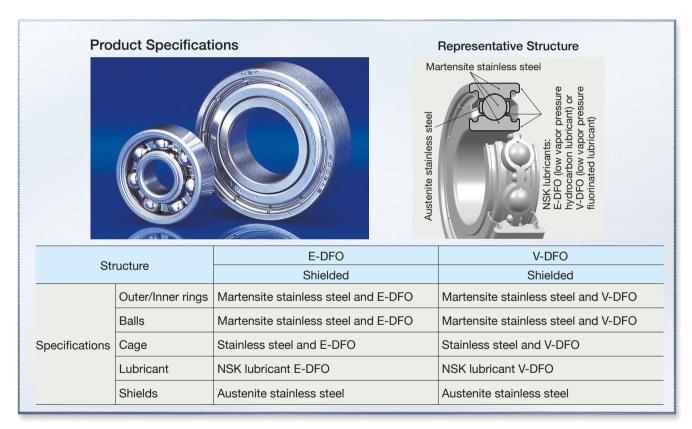

Results of durability tests in vacuum

FG9 provides the longest life in vacuum environments.

Results of particle emission tests at atmospheric pressure

FG9 grease limits particle emissions at atmospheric pressure.

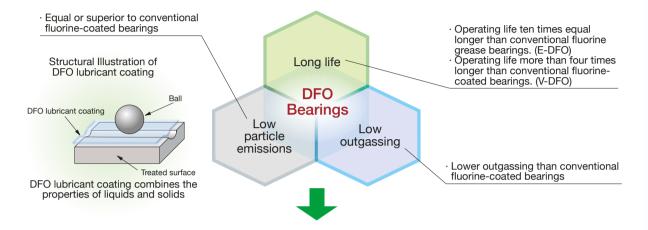
12. E-DFO Bearings, V-DFO Bearings


Page A23

Dimensions, accuracy and availability of bearings.

New concept V-DFO and E-DFO bearings have special lubrication coatings applied to the rings, balls, and cage that deliver superior cleanliness and long life. The V-DFO specification uses low-vapor-pressure fluorinated lubricant while the E-DFO specification uses low-vapor-pressure hydrocarbon lubricant.

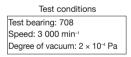
These bearings are suitable for cleanroom environments ranging from atmospheric pressure to vacuum conditions.

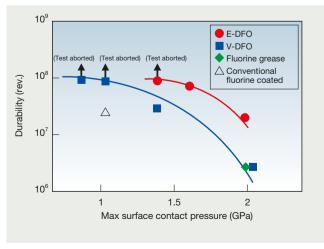


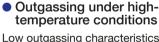
Applications: Manufacturing equipment for semiconductors, OLEDs, flat-panel displays, and hard disks; solar cell manufacturing; robots for vacuum environments

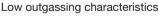
- Keep bearings packed until immediately before mounting.
- Avoid storing the bearing for a long amount of time.
- Wear clean gloves when handling.
- Mount the bearing without washing.
- Avoid exposure to any oil or moisture.
- See the tables on Page A23 for limiting loads and limiting rotational speeds.
- Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes). Cleanliness may
 vary depending on operating conditions, surrounding components, and other factors.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

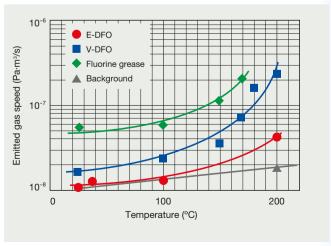
- Operating life more than four times longer than conventional fluorine-coated bearings
- Lower particle emissions and outgassing than MoS₂ solid lubricated bearings
- Usable in environments where lubricants containing metallic elements such as MoS2 are not suitable
- Usable from atmospheric pressure to vacuums at 10⁻⁷ Pa (room temperature), although the degree of vacuum in which the bearings can be used varies according to operating temperature

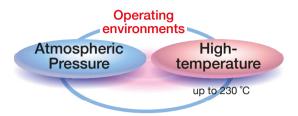

Performance

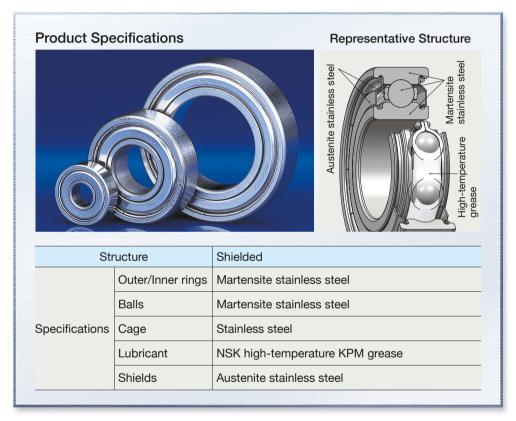

Comparison of operating environments for NSK lubricant E-DFO and V-DFO:


Conditions	E-DFO	V-DFO	
Corrosive gas	×	0	
Vacuum	(up to 150°C)	(up to 150°C)	
Atmospheric pressure	(up to 50°C)	(up to 200°C)	
Limiting load	(up to 5%)	(up to 2%)	


Durability under vacuum conditions


- 1. E-DFO offers nearly ten times more durability than conventional fluorine grease.
- 2. V-DFO offers upwards of four times the durability of a fluorine coated bearing.

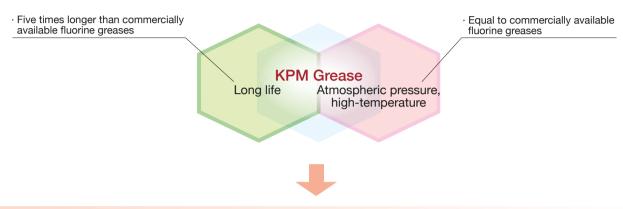



13. KPM Grease-Packed Bearings

Page A24

Dimensions, accuracy and availability of bearings.

These high-temperature bearings are packed with NSK's long-life, high-temperature KPM grease for use at atmospheric pressure only.

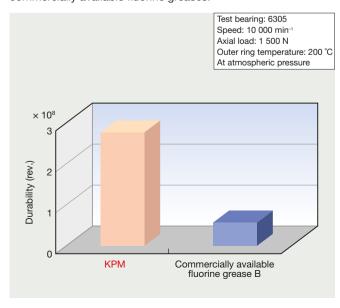


Applications: Copying machines, kilns, high-temperature conveyance equipment, other equipment for high-temperature environments

- KPM grease is for normal atmospheric conditions only.
- Not applicable for cleanroom environments.
- Keep bearings packed until immediately before mounting.
- See the tables on Page A24 for limiting loads and limiting rotational speeds.
- Ensure an optimum radial internal clearance for maximum rotational performance by applying a fit to the bearing that
 conisders bearing load, operating temperatures, materials of the shaft and/or housing (due to coefficient of linear expansion),
 etc.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

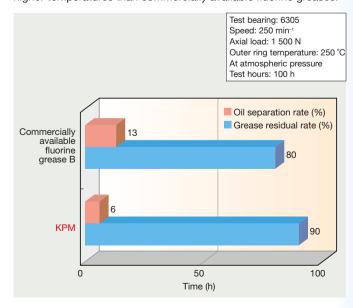
- Usable in high-temperature environments up to 230 °C
- Longer operating life than commercially available fluorine greases (five times longer at 200 °C)
- Longer operating life than solid lubricant high-temperature bearings

Performance


Properties of grease

Name	NSK high-temperature KPM grease	Commercially available fluorine grease B
Base oil	Base oil Fluorine oil Fluorine oil	
Thickener	PTFE	PTFE
Kinematic viscosity (mm²/s, 40 °C)	420	390
Consistency	290	280
Maximum operating temperature (°C)	230	230

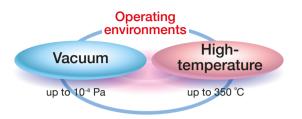
KPM: NSK-developed grease for use at atmospheric pressure only

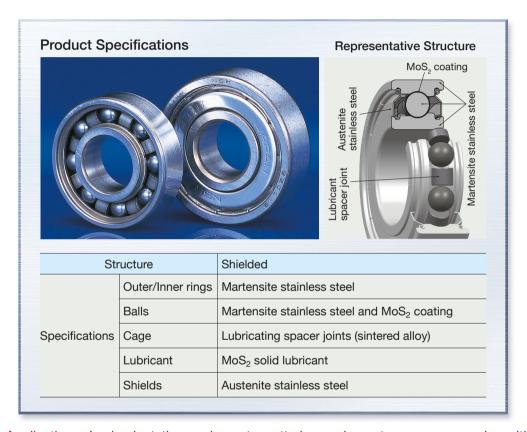

Durability

KPM's operating life is approximately five times longer than commercially available fluorine greases.

Oil separation and grease residual rates

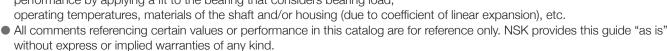
KPM is highly heat resistant, with lower oil separation rates at higher temperatures than commercially available fluorine greases.

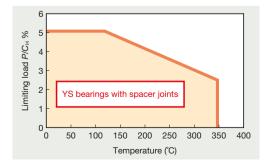

High-Temperature Environments (~350 °C), Vacuum Environments


14. YS Bearings With Spacer Joints

Page A25

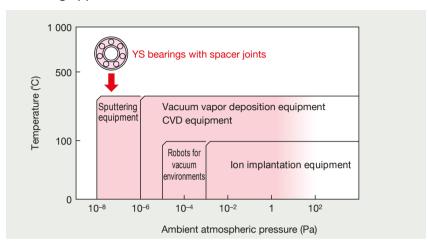
Dimensions, accuracy and availability of bearings

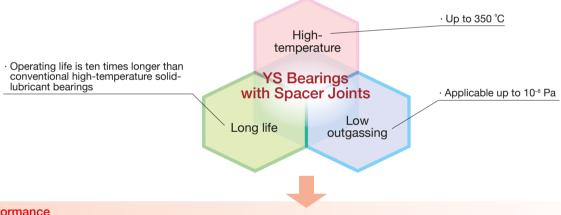

YS bearings with spacer joints are made of an alloy-based self-lubricating material (sintered alloy) between balls. They are suitable for high-temperature and vacuum environments.



Applications: Ion implantation equipment, sputtering equipment, vacuum vapor deposition equipment

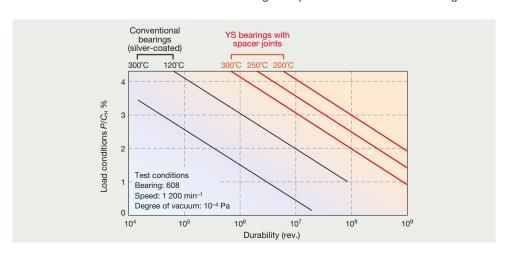
- For use in vacuum environments.
- Restrictions apply to bearings mounted to a vertical shaft due to a notch in the outer and inner rings. (Refer to the bearing manual)
- Keep bearings packed until immediately before mounting.
- Avoid storing the bearing for a long amount of time.
- Avoid exposure to any oil or moisture.
- The scope of application (limiting load, temperature) is listed in the table to the right.
- See the tables on Page A25 for limiting loads and limiting rotational speeds.
- Ensure an optimum radial internal clearance for maximum rotational performance by applying a fit to the bearing that considers bearing load, operating temperatures, materials of the shaft and/or bousing (due to considered).





- Grease-free, MoS₂ solid lubrication
- Usable in vacuum up to 10⁻⁸ Pa and temperatures up to 350 °C
- Operating life is 10 times longer than conventional high-temperature solid-lubricant bearings

Bearing applications

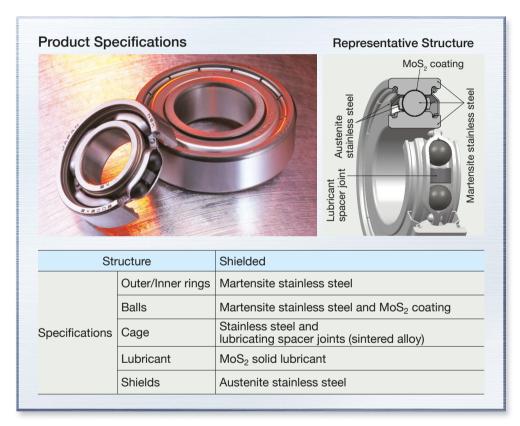


Performance

Durability

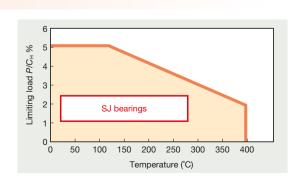
Over ten times more durable than conventional high-temperature solid-lubricant bearings.

D High-Temperature Environments (~400 °C)

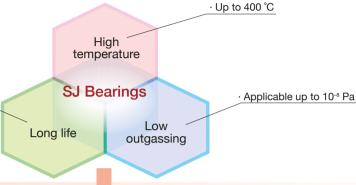

15. SJ Bearings

Page A26

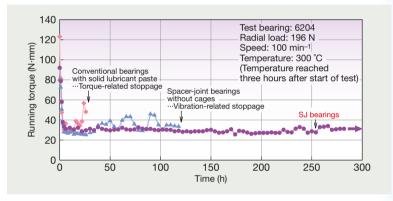
and availability of bearings.


SJ bearings have a "peapod" structure, with solid lubricant spacer joints mounted between two balls in cage pockets. These bearings are suitable for high-temperature environments at atmospheric pressure up to vacuum.

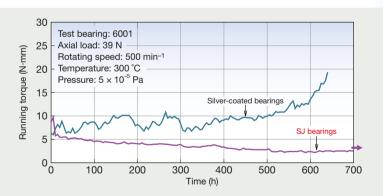
Applications: Vacuum vapor deposition equipment, kilns, kiln cars, steel plants, high-temperature conveyance equipment


- Do not use this bearing in an environment with excessive moisture or humidity.
- Keep bearings packed until immediately before mounting.
- Avoid storing the bearing for a long amount of time.
- Avoid exposure to any oil or moisture before use.
- The scope of application (limiting load, temperature) is listed in the table to the right.
- See the tables on Page A26 for limiting loads and limiting rotational speeds.
- Ensure an optimum radial internal clearance for maximum rotational performance by applying a fit to the bearing that considers bearing load, operating temperatures, materials of the shaft and/or housing (due to coefficient of linear expansion), etc.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

- Grease-free, MoS₂ solid lubricant
- Applicable from atmospheric pressure up to vacuums at 10° Pa and temperatures up to 400°C
- "Peapod" structure provides excellent torque stability and long life
- Over six times more durable than conventional high-temperature bearings with solid lubricant paste

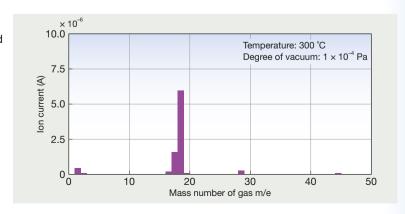

 Operating life more than six times longer than that of conventional bearings with solid lubricant paste

Performance


Durability

More than six times more durable than bearings with conventional solid lubricant paste, and more than twice as durable as conventional cageless bearings with spacer joints.

Durability of bearings in vacuum conditions


Outperforms silver-coated bearings in durability and torque stability.

Outgassing in vacuum conditions

No outgassing from chemical decomposition of the solid lubricant in spacer joints was seen in a high-temperature, vacuum environment.

Thus, pollution is not a concern with SJ bearings.

16. Food Grade Grease-Packed Bearings Pages A27-A28

These stainless steel bearings employ food-grade NSF*-registered grease for improved safety and are suitable for food processing machinery and pharmaceutical manufacturing equipment.

*NSF (International): U.S. non-profit third party accreditation organization that is internationally recognized in the field of public safety and health.

Applications: Food processing machinery, pharmaceutical manufacturing equipment

- Keep bearings packed until immediately before mounting.
- See the tables on Pages A27 and A28 for limiting loads and limiting rotational speeds.
- The grease is safe for incidental food contact only. Do not eat the grease.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

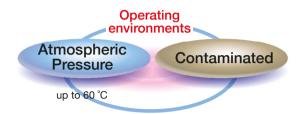
- RLS grease is usable at temperatures up to 120 °C while BL2 grease is usable up to 200 °C.
- Both RLS and BL2 grease meet Halal and Kosher dietary laws.

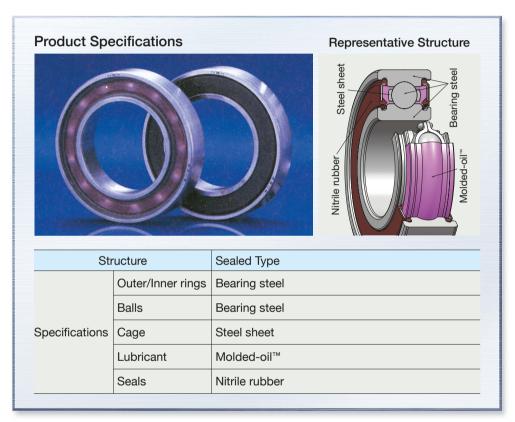
NSF Lubricant Categories

Safety Level

High H1: Usable where incidental food contact is possible

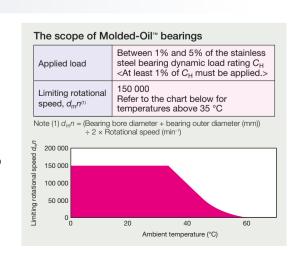
Low H2: Usable where there is no possibility of food contact


Performance


Properties of grease

Name	RLS	BL2 for high temperatures
NSF category	H1	H1
Base oil	Synthetic hydrocarbon oil	Fluorine oil
Thickener	Aluminum alloy soap	PTFE
Kinematic viscosity (mm²/s, 40 °C)	150	415
Consistency	280	280
Water wash-out	7.6%	0.1%
Operating temperature	0 – 120 °C	0 – 200 °C

17. Molded-Oil™ Bearings (For Contaminated Environments)


Molded-Oil[™] bearings feature a special material that provides a continuous supply of lubricating oil, allowing them to stand up to dust-contaminated environments at atmospheric pressure.

Applications: Food processing equipment, agricultural machines, woodworking machines, various conveyor lines

- For use in normal atmospheric conditions only.
- Because the solid lubricant used in these bearings will melt at a temperature of 120 °C, take care not to exceed temperatures of 100 °C when heating this bearing during the shrink-fit process for mounting.
- A radial load is required for the bearings to properly rotate. The minimum radial load to maintain proper rotation is at least 1 % of the basic dynamic load rating.
- Keep bearings packed until immediately before mounting.
- See the "4. Molded-Oil™ Bearings (Stainless Steel)" on Pages A33 and A34 for applications requiring corrosion resistance.
- The scope of application (applied load, limiting $d_m n$ value) is listed in the table to the right.
- Avoid exposure to organic solvents with a degreasing effect.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

- Oontinuous controlled flow of oil from Molded-Oil™ inside the bearing provides sufficient
- No grease or oil filling keeps operating environments clean
- Operating life in dust-contaminated environments is more than twice that with grease
- Comes standard with a contact seal (See table below).

Rubber Sealed Type (example)

Table of Dimensions and Availability (Contact-Seal Type)

■ Inquiry designation⁽¹⁾ □□□□ L11DDU

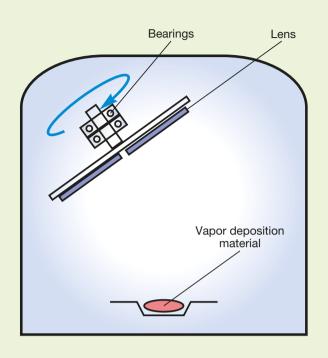
	Boundary	dimensions				Limiting	
Bore diameter	Outside diameter D	Width	Chamfer dimension (min.)	Basic designation	Availability	speed ⁽²⁾ (reference value)	Applied load ⁽³⁾ (reference value)
(mm)	(mm)	(mm)	(mm)	5000		(min ⁻¹)	(N)
40	22	6	0.3	6900	•	9 370	25 - 110
10	26	8	0.3	6000		8 330	40 - 190
	30	9	0.6	6200	•	7 500	45 - 210
4.0	24	6	0.3	6901	•	8 330	25 – 120
12	28	8	0.3	6001	•	7 500	45 – 210
	32	10	0.6	6201	-	6 810	60 – 290
	28	7	0.3	6902	•	6 970	40 – 180
15	32	9	0.3	6002	•	6 380	50 – 230
	35	11	0.6	6202	•	6 000	65 – 320
17	35	10	0.3	6003	•	5 760	55 – 250
	40	12	0.6	6203	•	5 260	85 – 400
20	42	12	0.6	6004	•	4 830	80 – 390
	47	14	1	6204	•	4 470	110 – 540
	47	12	0.6	6005	•	4 160	90 – 420
25	52	15	1	6205		3 890	120 – 590
	62	17	1.1	6305		3 440	180 – 870
	55	13	1	6006	•	3 520	120 – 560
30	62	16	1	6206	•	3 260	170 – 820
	72	19	1.1	6306	•	2 940	230 - 1 130
	62	14	1	6007	•	3 090	140 – 680
35	72	17	1.1	6207	•	2 800	220 - 1 090
	80	21	1.5	6307	•	2 600	290 - 1410
	68	15	1	6008	•	2 770	150 – 710
40	80	18	1.1	6208	•	2 500	250 - 1 240
	90	23	1.5	6308	•	2 300	350 - 1720
	75	16	1	6009	•	2 500	180 – 890
45	85	19	1.1	6209	•	2 300	270 - 1 330
	100	25	1.5	9309	•	2 060	450 – 2 250
	80	16	1	6010	•	2 300	190 – 920
50	90	20	1.1	6210	•	2 140	300 - 1 490
	110	27	2	6310	•	1 870	520 - 2600

Mark: Stocked as standard inventory. (4)

 ${\color{red}Notes} \ (1) \ The \ actual \ designation \ may \ differ \ from \ {\color{red}the inquiry } \ designation. \ {\color{red}DDD} \ indicates \ the \ basic \ designation. \ {\color{red}}$

- (2) The limiting speed of these bearings has been calculated for 25 °C operating conditions. Limiting speeds will be slower for operating conditions of 35 °C or higher. (Refer to the previous page for further details.)
- (3) Applied load values are for reference only; they are not guaranteed.
- (4) Orders for standard inventory may be delayed, particularly if shipped from Japan.

Remarks 1. The radial internal clearance for the bearings on this page is CN. See the radial internal clearance tables on Page A10 for further details.


2. Rubber sealed bearings are standard.

Applications of SPACEA™ Series Bearings

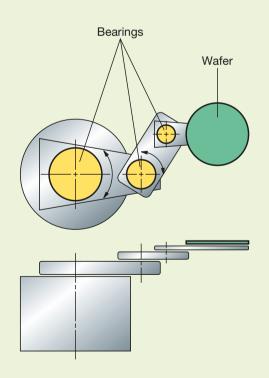
Vacuum Vapor Deposition Equipment

Operating Conditions — Vacuum/High temperature environments

- Degree of vacuum: 10⁻⁴ Pa
- Temperature: 200 to 300 °C
- Speed: Up to 100 min⁻¹
- Load: Up to 50 N

Conventional bearings

- Silver-coated bearing (6002, 6004, etc.)
- Operating life: 2 to 3 months



NSK SPACEA™ Series

YS Bearings with Spacer Joints

Operating life: More than 1 year

Robots for Vacuum Environments

Operating Conditions

Vacuum/Cleanroom environments

- Degree of vacuum: 10⁻⁴ Pa
- Temperature: Up to 120 °C
- Speed: Low-speed swing
- Load: Moment load

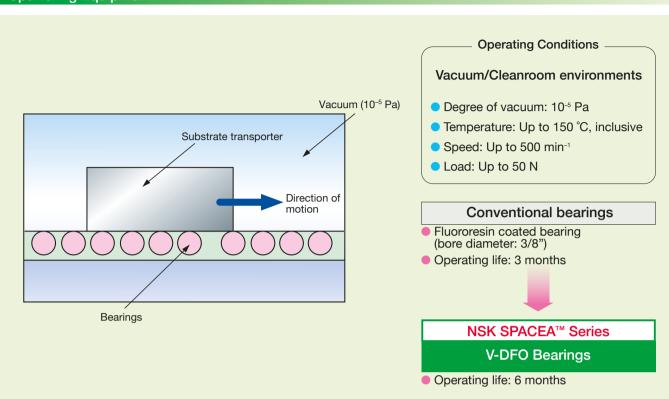
Conventional bearings

Thin-walled bearing

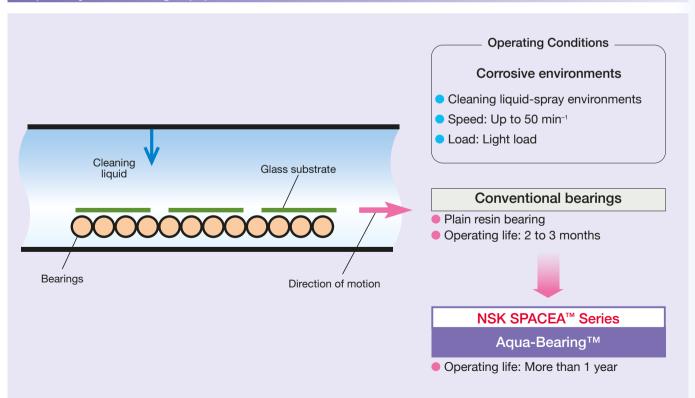
Inner/Outer rings: Stainless steel Balls: Special glass balls

Operating life: 2 to 3 months

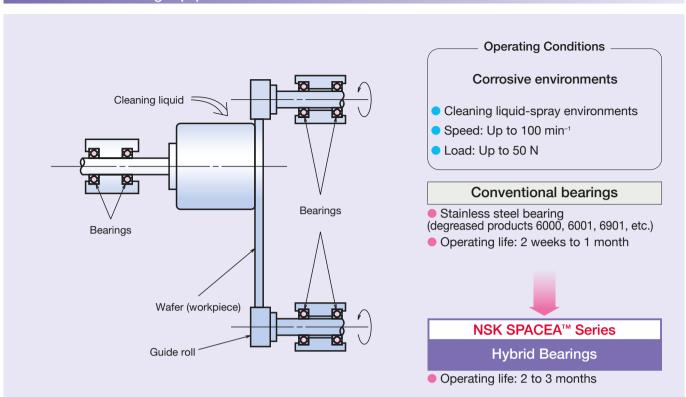
NSK SPACEA™ Series

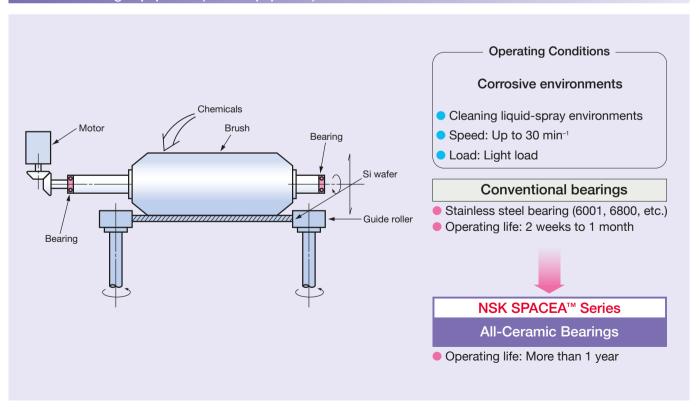

N Series Thin-section Bearings

(NBA2504, NBX15206, etc.) Inner/Outer rings: Stainless steel Balls: Ceramics


Operating life: More than 1 year

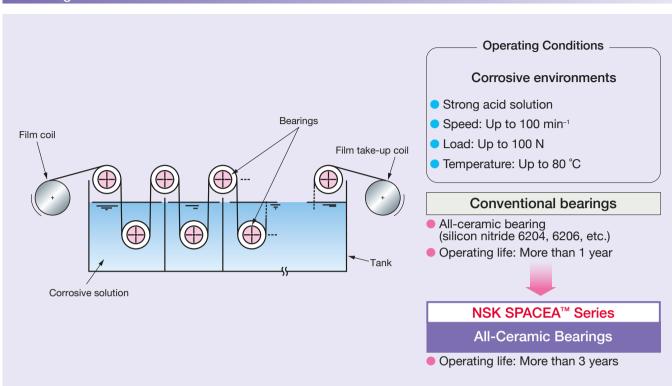
Sputtering Equipment


Liquid Crystal Cleaning Equipment

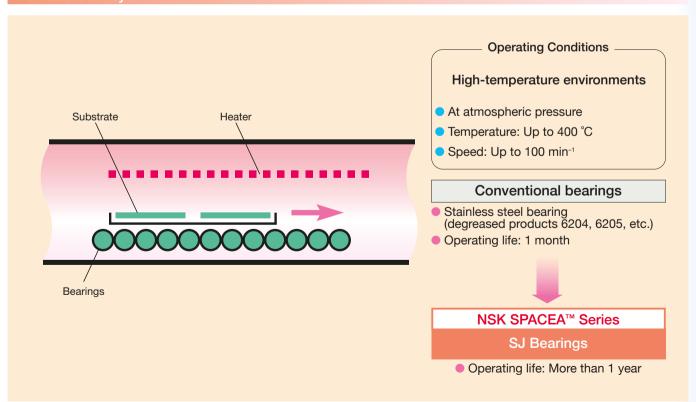


Applications of SPACEA™ Series Bearings

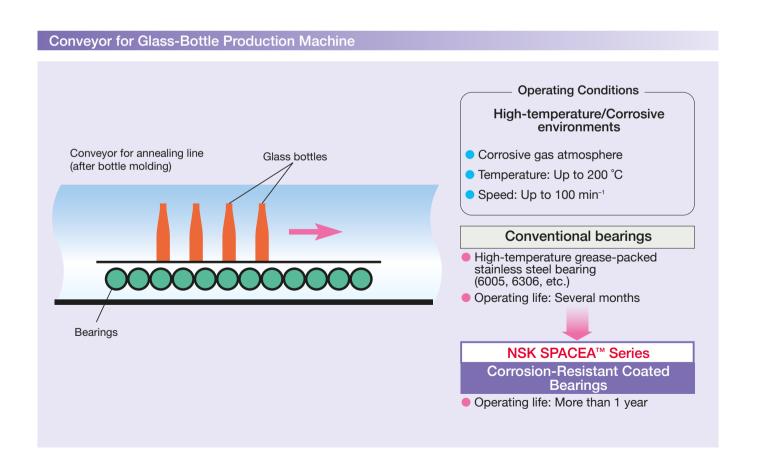
Silicon Wafer Cleaning Equipment

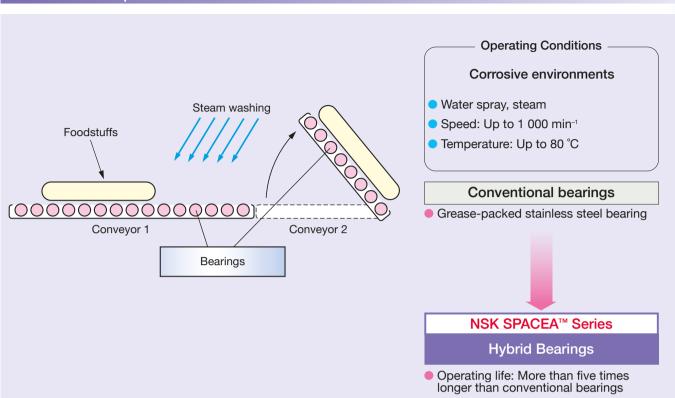


Wafer Polishing Equipment (CMP Equipment)

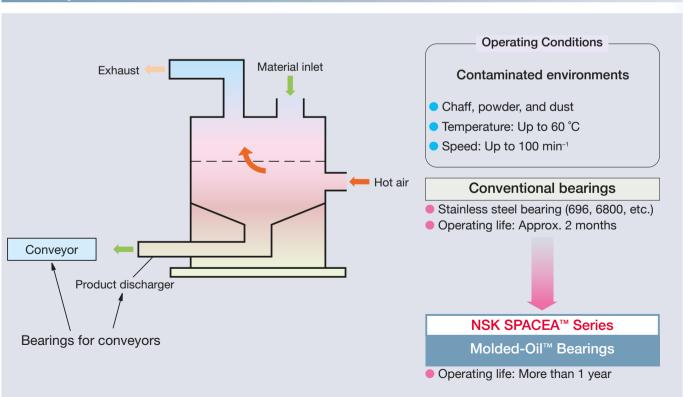


Cleaning Device


Furnace Conveyor


Applications of SPACEA™ Series Bearings

Aseptic Filling Equipment for Soft Drinks **Operating Conditions** Corrosive environments Corrosive liquid-spray (for sterilization) Bottle-rinsing Drink-filling Capping line and rinsing) line line Speed: Up to 300 min⁻¹ Load: Up to 50 N Bottle Temperature: Up to 80 °C Bottle conveyor Conventional bearings Stainless steel bearing (6205, 6212, 6306, etc.) Operating life: Several months NSK SPACEA™ Series Conveyor line Bearing **Corrosion-Resistant Coated** Bearings Operating life: More than 1 year



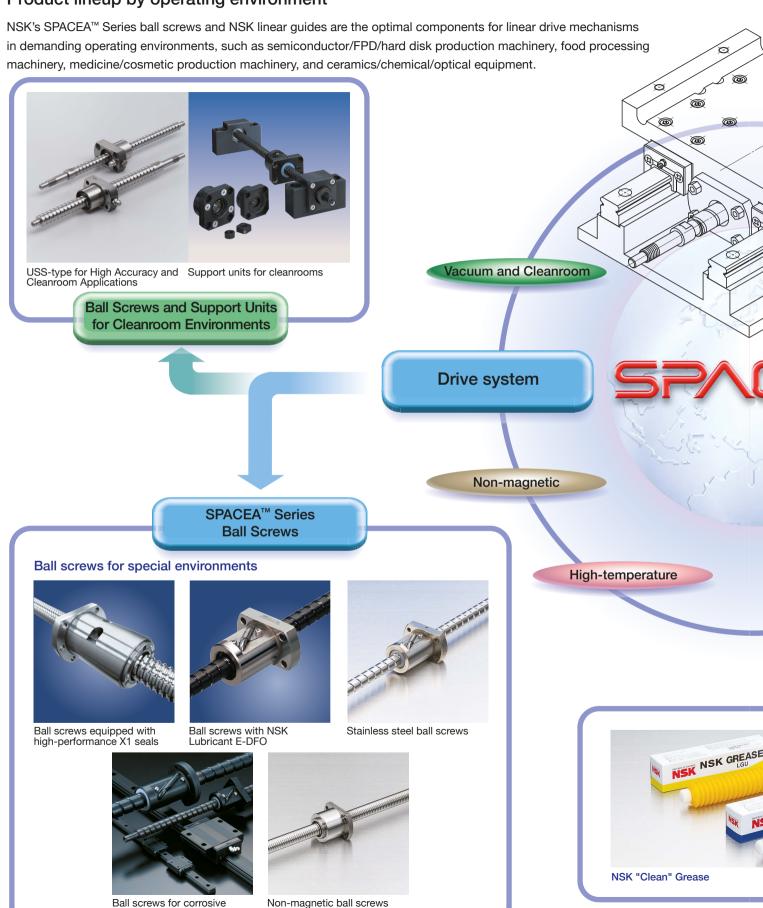
Raw Material Preparation Device

Grain Dryer

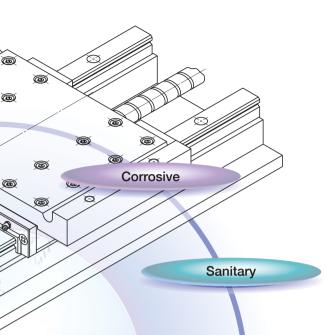
SPACEA™ Series Precision Machine Components: Trusted Solutions for Special Environments

SPACEA™ Series ball screws and NSK Linear Guides utilize NSK's state-of-the-art technologies to deliver excellent performance, even in severe operating conditions.

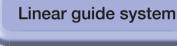
Please see Pages B5-B6 for recommended products for specific applications.

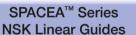

SPACEA™ Series Ball Screws and NSK Linear Guides

A	Inventory ·····	B3-B4
B	Selection Guide	B5-B6
C	Types and Specifications	B7-B8
D	Dimensions and Availability	9-B12
	1. Ball Screws	
	2. Support Units for Cleanrooms	
	3. NSK Linear Guides	
E	Specifications, Operating Instructions, and Technical Data B1	3-B32
	Corrosion-Resistant Ball Screws and NSK Linear Guides (Fluoride Low-Temperature Chrome Plating) B	13–B14
	2. LG2/LGU "Clean" Greases	15–B16
	3. NSK Lubricant E-DFO	17–B18
	4. Compact FA-USS Model: High-Accuracy type for Cleanrooms	19-B20
	5. Support Units for Cleanroom Environments	21–B22
	6. NSK K1™/NSK K1-L™ Lubrication Unit ····································	23-B26
	7. NSK High-Performance Seals B2	27-B30
	8. Ball Screws and NSK Linear Guides for High-Temperature Environments B3	31–B32
E	Applications for SPACEA™ Series Ball Screws and NSK Linear Guides····································	3-B34
	1. Semiconductor Manufacturing Equipment/Flat Panel Display Manufacturing Equipment	



SPACEA™ Series Ball Screws and NSK Line


Product lineup by operating environment



environments

Linear guides for special environments

Linear guides equipped with high-performance seals

Linear guides with NSK Lubricant E-DFO

Stainless steel linear guides

Contaminated

Linear guides for corrosive environments

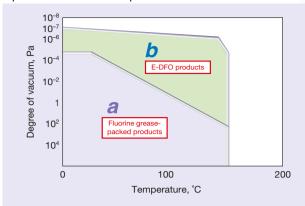
Linear guides for food processing

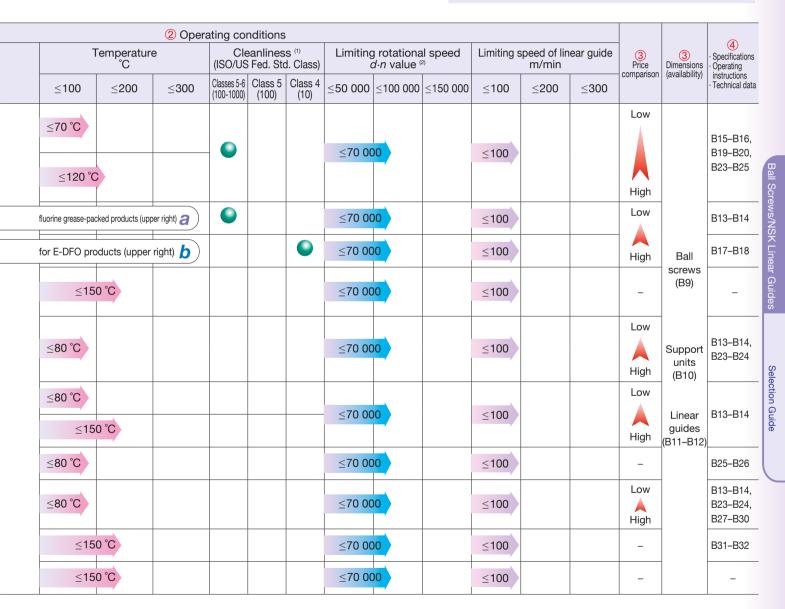
Linear guides for high temperatures

SPACEA™ Series Ball Screws and NSK

Select the most appropriate product with the following flow chart.

	0	①	Product nam	ne	Deg	gree of Pa		ı	
	Operatir	ng environment			Atmospheric pressure	10-4≤	10⁻8≤		
	Cleanroom	Atmospheric pressure	LG2 grease-packed ball screws at	nd linear guides					
Vacuum	Cleaniooni	(room temperature)	LGU grease-packed ball screws a	nd linear guides					
and cleanroom	Vacuum	From atmospheric pressure up to vacuum (room temperature)	Fluorine grease-packed ball screw	s and linear guides	See the	scope of	application	ns for	
	Vacuum	From atmospheric pressure up to vacuum (up to 150 °C)	Ball screws and linear guides with	NSK Lubricant E-DFO	See th	e scope c	of applicat	ions	
	Non- magnetic	Non-magnetic (relative permeability 1.01 or less) (from atmospheric pressure up to vacuum)	Non-magnetic stainless steel ball guides	screws and linear		10-⁵Pa			
	Water	Water vapor, high-humidity environments	Ball screws and linear guides for corrosive environments	(Standard grease)					
Commonities	vvaler	Water-immersed, water-spray	Ball screws and linear guides for corrosive environments	(Standard seal)					
Corrosive		Weak acid, weak alkali	Corrosion-Resistant coated ball screws and linear guides	(Fluorine grease) (Corrosion-Resistant					
	S	trong acid, strong alkali	Stainless steel ball screws and linear guides	seal)					
Sanitary	Food	d processing environments	Ball screws and linear guides for f	ood processing	0				
Contaminated		Dust or wood chips	Ball screws equipped with high-pe Linear guides equipped with high-	erformance X1 seal performance seal					
High- temperature	Atmosp	oheric pressure (up to 150 °C)	Ball screws and linear guides for henvironments	nigh-temperature	0				
Non- magnetic	From	atmospheric pressure up to vacuum	Non-magnetic stainless steel ball guides	screws and linear		10⁻⁵Pa			

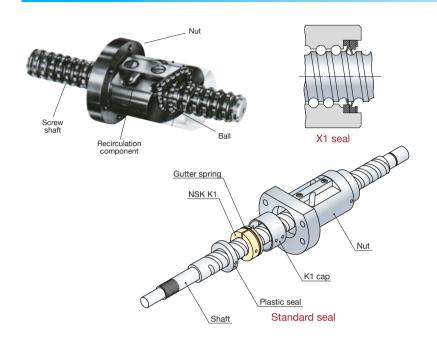

⁽¹⁾ Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes). Cleanliness may vary depending on the usage conditions and surrounding structure.


⁽²⁾ $d \cdot n = \text{Shaft diameter of ball screws (mm)} \times \text{rotational speed (min}^{-1})$

3 Select the product most appropriate in terms of availability and price.

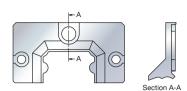
Check the operating instructions and notes.

 Scope of applications for fluorine grease-packed products and E-DFO products

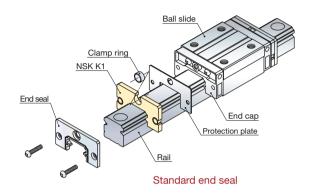


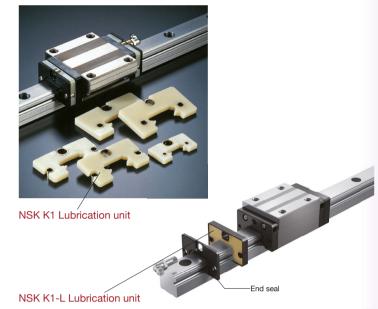
Types and Specifications of SPACEA™ Ball

SPACEA™ Series Ball Screws


	Operati	ng environment	Product name	Ball screw specifications	Shaft, nut
				Linear guide specifications	Rail, ball slides
	O.	Atmospheric pressure	LG2/LGU grease	-packed ball screws and	Standard material
	Cleanroom	(room temperature)	linear guides	•	
Vacuum and		From atmospheric pressure up to vacuum (room temperature)	Fluorine grease- linear guides	packed ball screws and	Martensite stainless steel
cleanroom	Vacuum	From atmospheric pressure up to vacuum (up to 150 °C)	Ball screws and E-DFO	linear guides with NSK Lubricant	
	Non-magnetic From atmospheric pressure up vacuum Water vapor, high-humidity		Non-magnetic st linear guides	ainless steel ball screws and	Special austenite stainless steel
	Water vapor, high-humidity environments Water		Corrosion-resista linear guides	ant coated ball screws and	Standard material
Corrosive	Water-immersed, water-spray		Stainless steel ba	all screws and linear guides	Martensite stainless steel
Corrosive	,	Weak acid, weak alkali	Corrosion-resista linear guides	ant coated ball screws and	Standard material
	S	strong acid, strong alkali	Stainless steel ba	all screws and linear guides	Martensite stainless steel
Sanitary	Food	d processing environments	Ball screws and food processing	linear guides for	Martensite stainless steel
Contaminated		Dust or wood object	Ball screws equi seal	pped with high-performance X1	Standard material
Contaminated	nated Dust or wood chips		Linear guides equipped with high-performance seal		Standard material
High- temperature	Atmos	pheric pressure (up to 150 °C)	Ball screws and high-temperature		Martensite stainless steel
Non- magnetic	From atm	ospheric pressure up to vacuum	Non-magnetic st linear guides	ainless steel ball screws and	Special austenite stainless steel

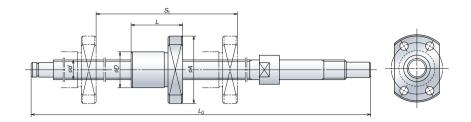
Note: Under radioactive operating conditions, resins used in standard products may cause distortion and lubricants may deteriorate. Please consult with NSK for appropriate product selection.


Screws and NSK Linear Guides



SPACEA™ Series NSK Linear Guides

High-performance end seal



	Component specification	ns			· Specifications
Dell	Recirculation components	Cool	Corrosion-Resistant	Lubricont	Operating instructions
Ball	End cap	Seal	coating	Lubricant	· Technical data
Standard material	Standard material	Standard	F1	LG2 "Clean" grease, NSK K1/NSK K1-L	B15–B16, B19–B20,
		seal	Fluoride Low- Temperature chrome plating	LGU "Clean" grease, NSK K1/NSK K1-L	B23–B24
Martensite stainless steel	Austenite stainless steel		ornome planng	Fluorine grease	B13-B14
		_	_	E-DFO (+ DLC) or Molybdenum disulfide	B17–B18
Ceramics	Austenite stainless steel	Standard seal	-	Standard grease, Fluorine grease	-
Standard material	Standard material	Standard	Fluoride Low- Temperature	Standard grease + NSK K1/NSK K1-L	B13-B14,
Martensite stainless steel		seal	chrome plating	Standard grease + NOICICI/NOICICI-L	B23-B24
Standard material	Austenite stainless steel	Corrosion-	Fluoride Low- Temperature	Fluorine grease	B13-B14
Martensite stainless steel		resistant seal	chrome plating	ridoffile grease	
Martensite stainless steel	Austenite stainless steel	Standard seal	_	Grease for food processing applications, NSK K1 for food processing applications and medical devices	B25-B26
Chandand makanial	Charadand mathemial	X1 seal	Fluoride Low-	Standard grease	B13–B14, B27
Standard material	Standard material	High dust- resistant seal	Temperature chrome plating	Standard grease + NSK K1/NSK K1-L	B13–B14, B23–B24, B28-B30
Martensite stainless steel	Austenite stainless steel	(High dust- resistant seal)	_	Heat-resistant grease, Fluorine grease	B31-B32
Ceramics	Austenite stainless steel	Standard seal	_	Standard grease, Fluorine grease	

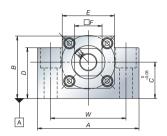
Dimensions and Availability of SPACEA™

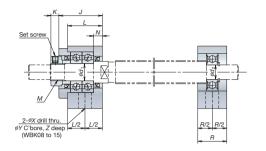
1. Ball Screw Dimensions

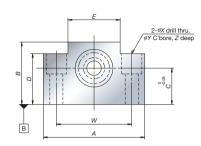
					Dimension	ıs (mm)						0.4-1.33	······································		/	
Model	Shaft		Effective	Number	Nut	Flange	Nut	Maximum	Stroke	Dynamic		Suitability	for special en	ivironments	(availability)	
Š	diameter	Lead	turns of balls	of starts	outer diameter	outer diameter	length	shaft length	Stroke	load rating	01	M	0	0	O-mt-min-st-st	High-
_	d				D	Α	L	L ₀ max	St	(N)	Cleanroom	Vacuum	Corrosive	Sanitary	Contaminated	temperature
	6	1	1×3	1	12	24	21	174	100	555	0		0			
		1	1×3	1	14	27	21	248	150	645						
	8	2	1×3	1	16	29	28	248	150	1 270						
	10	2	1×3	1	18	35	29	308	200	1 470	0		0			
	10	4	2.5×1	1	26	46	34	430	300	2 630	0		0	<u> </u>		
KA		2	1×3	1	20	37	29	380	250	1 600				9		
	12	5	2.5×1	1	30	50	40	580	450	3 590						
		10	2.5×1	1	30 34	50 57	50 51	580 1 161	450 1 000	3 620 6 660				$ \otimes$		
	15	10 20	2.5×1 1.7×1	1	34	55	45	1 161	1 000	4 630						
	16	20	1.7×1	1	25	44	40	461	300	3 400	$\vdash \times \vdash$		$\vdash \times \vdash$	$\overline{}$		
	20	20	1.5×1	1	46	74	63	1 208	1 000	6 700	$\vdash \times \vdash$		\sim	\sim		
U	10		1.071	<u>'</u>	23	43	29	521	433	3 420	\sim					
S	12	5	2.7×1	1	24	44	30	621	530	3 750	Ŏ					
S	15			-	28	51	30	761	653	6 410	Ŏ					
		2	1×3	1	22	39	29	308		1 470	Ŏ	0		0		
	10	4	2.5×1	1	26	46	34	430		2 630	Ŏ	Ŏ	Ŏ	Ŏ		Ŏ
		2	1×3	1	24	41	29	380		1 600		0		0		
	12	5	2.5×1	1	30	50	40	580		3 590						
		10	2.5×1	1	30	50	50	580		3 620				0		0
	15	10	2.5×1	1	34	57	51	1 161		6 660			0	<u> </u>		0
		20	1.7×1	1	34	55	45	1 161		4 630		<u> </u>	0	<u> </u>		0
	16	2	1×4	1	30	49	40	461		3 400		$\overline{}$		9		
	20	20	1.5×1	1	46	74	63	1 208		6 700		$ \bigcirc$		\bigcirc		
	25	5	2.5×2	1	50 44	73 71	55	1 800		16 000		-2 $-$	-2	-2 $-$		-2 $-$
		25 5	1.5×1 2.5×2	1	58	85	90 106	2 400		9 610 17 800		$\overline{}$	$ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ \times$ $ -$	\sim		\sim
		10	2.5×2	1	74	108	125	2 400		44 500	$\vdash $	$\overline{}$	\vdash	$\overline{}$		\vdash
		20	2.5×1	1	78	105	107	2 400		16 900	$\vdash \times \vdash$	$\overline{}$	\sim			$\overline{}$
	32	25	2.5×1	1	78	105	120	2 400		16 700	$\overline{}$	$\overline{}$	\sim			$\overline{}$
		32	1.5×1	1	51	85	109	2 400		10 900	Ŏ	$\tilde{}$	Ŏ			Ŏ
pu		32	1.7×2	2	56	86	109	2 800		32 100	Ŏ			Ŏ		
Ë		25	2.5×1	1	100	133	136	3 000		27 900	Ŏ	0				0
g		32	1.5×2	2	100	133	122	3 000		32 100	0	0	Ŏ			Ŏ
o		40	1.5×1	1	64	106	133	3 000		17 400		0		0		
on	40	10	2.5×2	1	82	124	173	2 900		61 200	0			0		
ĊŢ.		12	2.5×2	1	86	128	197	2 900		71 700	<u> </u>			<u> </u>		
Production on demand		16	3.7×1	1	86	128	172	2 900		66 900				\square	+2	
Pre		20	2.7×2	2	86	128	164	2 900		77 900	$\vdash Q$			\square	10	
		8	2.5×4	1	82	120	162	3 300		65 300	$\vdash \vee \vdash$	$ \stackrel{\vee}{\sim}$	$\vdash \vee \vdash$	-2		$\vdash \cong$
	15	10	2.5×2 2.5×2	1	88 82	132 124	117	2 900		53 800	$\vdash \times \vdash$	$\overline{}$		$\vdash \times \vdash$	 	$\vdash \cup$
	45	8 16	2.5×2 3.7×1	1	92	134	146 173	2 900		44 000 69 900				$\vdash \times \vdash$	$+ \times -$	
		20	2.7×2	2	92	134	164	2 900		83 200	$\vdash \times \vdash$			$\vdash \stackrel{\sim}{ ightarrow}$	$+ \times$	
		8	2.5×4	1	90	129	149	3 500		67 900	\sim			\sim		
		10	2.5×4	1	93	135	163	3 500		101 000	$\vdash \overset{\sim}{\sim}$	\prec	$\vdash X \vdash$	$\vdash \preceq \vdash$		$\vdash \prec \vdash$
		25	2.5×1	1	120	156	140	3 300		42 000	Ŏ	$\overline{}$	Ŏ			Ŏ
		32	2.5×1	1	120	156	158	3 300		41 600	Ŏ	Ŏ	Ŏ			Ŏ
		40	1.5×2	2	120	156	140	3 300		48 000	Ŏ	Ŏ	Ŏ			Ŏ
	50	50	1.5×1	1	80	126	161	3 500		25 900	Ŏ	Ŏ	Ŏ	0		Ŏ
		50	1.5×2	2	120	156	158	3 500		47 100	Ó	Ó	Ó			Ó
		10	2.5×2	1	93	135	174	2 900		68 100	Q			0		
		12	2.5×2	1	100	146	200	2 900		91 500				<u> </u>	10	
		16	3.7×1	1	98	140	173	2 900		72 700				<u> </u>	10	
		20	2.7×2	2	98	140	164	2 900		85 700						

Contact NSK for the details of availability

Note: The dynamic load ratings listed are for martensite stainless steel screws, with the internal clearance as a reference. These may vary depending on materials or internal specifications.



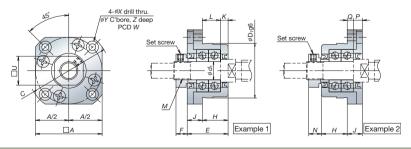

Series Ball Screws



2. Dimensions of Support Units for Cleanrooms

Square type

Unit: mm


	Fixed support side unit (square type)												
Reference No. (for use in clean environments)	Locknut tightening torque (reference) [N·cm]	Set screw tightening torque (reference) [N·cm]	d ₁	F	J	К	L	N	М				
WBK08-01C	230	69 (M3)	8	14	23	7	_	4	M8 × 1				
WBK10-01C	280	147 (M4)	10	17	30	5.5	24	6	M10 × 1				
WBK12-01C	630	147 (M4)	12	19	30	5.5	24	6	M12 × 1				
WBK15-01C	790	147 (M4)	15	22	31	12	25	5	M15 × 1				

Unit: mm

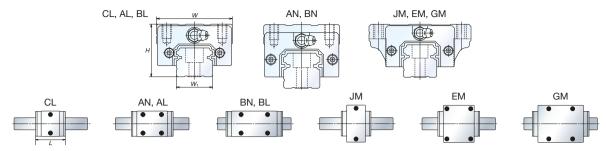
Simple suppor	t side unit		Dimensions common with square type										
Reference No. (for use in clean environments)	d ₂	R	А	В	С	D	Ε	W	Х	Y	Z		
WBK08S-01C	6	15	52	32	17	26	25	38	6.6	11	12		
WBK10S-01C	8	20	70	43	25	35	36	52	9	14	11		
WBK12S-01C	10	20	70	43	25	35	36	52	9	14	11		
WBK15S-01C	15	20	80	50	30	40	41	60	11 9	17 14	15 11		

Note: For dimensions X, Y, and Z for WBK15S-01C, the upper number indicates dimensions of the fixed support side unit, and the lower number shows dimensions of the simple support side unit.

Round type

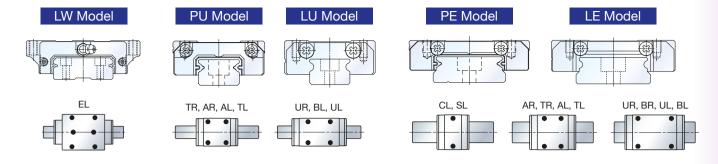
Unit: mm

Reference No. (for use in clean							F	ixed s	suppor	t side	unit (ro	ound t	ype)						
environments)	d ₁	Α	С	U	W	X	Y	Z	<i>D</i> ₁	E	F	Н	J	K	L	N	Р	Q	М
WBK08-11C	8	35	43	14	35	3.4	6.5	4	28	23	7	14	9	4	10	8	5	4	M8 × 1
WBK10-11C	10	42	52	17	42	4.5	8	4	34	27	7.5	17	10	5	12	8.5	6	4	M10 × 1
WBK12-11C	12	44	54	19	44	4.5	8	4	36	27	7.5	17	10	5	12	8.5	6	4	M12 × 1
WBK15-11C	15	52	63	22	50	5.5	9.5	6	40	32	12	17	15	6	11	14	8	7	M15 × 1


Note: Refer to the dimensions of square type support units for tightening torque of locknuts and setscrews.

Dimensions and Availability of SPACEA™

3. NSK Linear Guide Dimensions


NH, VH, NS, LH Models

0				Din	nensions (mm)				Suitability	for special er	nvironments	(availability))
Model	Model No.	Height	Overall width	Ball slide	e length (L)	Rail width	Dynamic load rating	Cleanroom	Vacuum	Corrosive	High-	Sanitary	Contaminat
2		Н	W	Standard	With NSK K1	W_1	(N)	Clearifooni	vacuum	Corrosive	temperature	Sariitary	Contaminat
	NH15AN	28	34	55	65.6	15	14 200	0		0		0	
	NH15BN	28	34	74	84.6	15	18 100	0		0		0	
	NH15EM	24	47	55	65.6	15	14 200					O O	
	NH15GM NH20AN	30	47	74 69.8	84.6 80.4	15 20	18 100 23 700	0				0	
	NH20AN NH20BN	30	44	91.8	102.4	20	30 000	0			8		
	NH20EM	30	63	69.8	80.4	20	23 700	ŏ	l ŏ	1 8	ŏ	<u> </u>	
	NH20GM	30	63	91.8	102.4	20	30 000	ŏ	ŏ	<u> </u>	ŏ	ŏ	
	NH25AN	40	48	79	90.6	23	33 500	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	
	NH25BN	40	48	107	118.6	23	45 500	Ō	Ō	0	Ō	0	
	NH25AL	36	48	79	90.6	23	33 500	0	0		0	0	
	NH25BL	36	48	107	118.6	23	45 500	0	<u> </u>		0	0	
	NH25EM	36	70	79	90.6	23	33 500	0	0		0	0	
	NH25GM NH30AN	36 45	70 60	107 85.6	118.6 97.6	23 28	45 500 41 000	0	0				-
	NH30BN	45	60	124.6	136.6	28	61 000	<u> </u>	<u> </u>		<u> </u>	8	
	NH30AL	42	60	85.6	97.6	28	41 000	ŏ	l ŏ	l ŏ	ŏ	l ŏ	
	NH30BL	42	60	124.6	136.6	28	61 000	ŏ	ŏ	Ŏ	ŏ	ŏ	
	NH30EM	42	90	98.6	110.6	28	47 000	ŏ	ŏ	ŏ	ŏ	ŏ	
	NH30GM	42	90	124.6	136.6	28	61 000	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	
۱Н	NH35AN	55	70	109	122	34	62 500	0		0	0	0	
VI I	NH35BN	55	70	143	156	34	81 000	0		0	0	0	
	NH35AL	48	70	109	122	34	62 500	0			0	0	
	NH35BL	48	70	143	156	34	81 000	0			0	<u> </u>	
	NH35EM NH35GM	48 48	100	109 143	122 156	34 34	62 500 81 000						
	NH45AN	70	86	139	154	45	107 000	0					+
	NH45BN	70	86	171	186	45	131 000	ŏ		1 8	ŏ		
	NH45AL	60	86	139	154	45	107 000	ŏ		 ŏ	ŏ		
	NH45BL	60	86	171	186	45	131 000	Ŏ		Ŏ	Ŏ		
	NH45EM	60	120	139	154	45	107 000	Ō		0	Ō		
	NH45GM	60	120	171	186	45	131 000	0		0	0		
	NH55AN	80	100	163	178	53	158 000	0					
	NH55BN	80	100	201	216	53	193 000	0					
	NH55AL	70	100	163	178	53	158 000	0		0			
	NH55BL	70	100	201	216	53	193 000	0					
	NH55EM	70 70	140 140	163 201	178 216	53	158 000	0		\vdash			
	NH55GM NH65AN	90	126	193	211	53 63	193 000 239 000						1
	NH65BN	90	126	253	271	63	310 000	0					
	NH65EM	90	170	193	211	63	239 000	ŏ		l ŏ			
	NH65GM	90	170	253	271	63	310 000	Ŏ		Ŏ			
	VH15AN	28	34		0.6	15	14 200	Ō		0			0
	VH15BN	28	34	8	9.6	15	18 100	0		0			
	VH15EM	24	47		0.6	15	14 200	0		0			0
	VH15GM	24	47		9.6	15	18 100	0					
	VH20AN	30	44		7.4	20	23 700	0					
	VH20BN	30	44		9.4	20	30 000	2					1 8
	VH20EM VH20GM	30 30	63 63		87.4 19.4	20 20	23 700 30 000	0		H X			$+$ $\stackrel{\vee}{\sim}$
	VH25AN	40	48		17	23	33 500	0					
	VH25BN	40	48	12		23	45 500	<u> </u>					1 8
	VH25AL	36	48		. 	23	33 500	ŏ		ŏ			Ŏ
	VH25BL	36	48	12		23	45 500	ŏ		Ŏ			T ŏ
	VH25EM	36	70	9	17	23	33 500	Ō		Ŏ			Ŏ
	VH25GM	36	70	12		23	45 500	0					0
	VH30AN	45	60		14.4	28	41 000	0		0			0
	VH30BN	45	60		3.4	28	61 000	0		<u> </u>			
/1.1	VH30AL	42	60		14.4	28	41 000	0		1 0			$+ \circ$
′H	VH30BL VH30EM	42 42	60 90		7.4	28 28	61 000 47 000						
	VH30EM	42	90		3.4	28	61 000	0					1 %
	VH35AN	55	70		8.8	34	62 500	0					1 0
	VH35BN	55	70		2.8	34	81 000	ŏ		l ŏ			l ŏ
	VH35AL	48	70		8.8	34	62 500	ŏ		l ŏ			T ŏ
	VH35BL	48	70		2.8	34	81 000	Ŏ		Ŏ			
	VH35EM	48	100		8.8	34	62 500	0		0			0
	VH35GM	48	100		2.8	34	81 000	0		0			0
	VH45AN	70	86		1.4	45	107 000	0					1 0
	VH45BN	70	86		13.4	45	131 000	0					
	VH45AL	60	86		11.4	45	107 000	0		8			
	VH45BL VH45EM	60	86 120		13.4	45 45	131 000 107 000						
	VH45EM VH45GM	60 60	120		3.4	45	131 000	0					1 8
	VH55AN	80	100		5.4	53	158 000						T ŏ
	VH55BN	80	100		3.4	53	193 000	ŏ		<u> </u>			1 6
	VH55AL	70	100		5.4	53	158 000	ŏ		 ŏ			l ŏ

Series NSK Linear Guides

<u></u>				Dim	nensions (mm)				Suitability 1	or special er	nvironments (availability)	
Model	Model No.	Height	Overall width	Ball slide	length (L)	Rail width	Dynamic load rating	Cleanroom	Vacuum	Corrosive	High-	Sanitary	Contaminated
~		Н	W	Standard	With NSK K1	W_1	(N)	Cicariicoiii	radaani	001100110	temperature	our many	Contamiatou
	VH55BL	70	100		3.4	53	193 000	0		0			0
VH	VH55EM	70 70	140 140		5.4	53 53	158 000 193 000	0		0			0
	VH55GM NS15CL	24	34	40.4	50	15	7 250	0	0	0		0	0
	NS15AL	24	34	56.8	66.4	15	11 200	ŏ	ŏ	ŏ	ŏ	ŏ	
	NS15JM	24	52	40.4	50	15	7 250	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	
	NS15EM	24	52	56.8	66.4	15	11 200	0	<u> </u>	0	Q	<u> </u>	
	NS20CL	28 28	42 42	47.2	57.8	20 20	10 600	0	0	0	0	<u> </u>	
	NS20AL NS20JM	28	59	65.2 47.2	75.8 57.8	20	15 600 10 600	Ö	0	0	Ö		
	NS20EM	28	59	65.2	75.8	20	15 600	ŏ	ŏ	ŏ	ŏ	ŏ	
	NS25CL	33	48	59.6	70.2	23	17 700	0	0	0	0	0	
NS	NS25AL	33	48	81.6	92.2	23	26 100	0		0	0		
	NS25JM NS25EM	33 33	73 73	59.6 81.6	70.2 92.2	23 23	17 700 26 100	0	0	0	0		
	NS30CL	42	60	67.4	79.4	28	24 700	0	0	0	0*	0	
	NS30AL	42	60	96.4	108.4	28	38 000	ŏ	Ŏ	Ŏ	<u></u> *	Ō	
	NS30JM	42	90	67.4	79.4	28	24 700	Q	Ö	Ö	0*	Ŏ	
	NS30EM	42	90	96.4	108.4	28	38 000	Ŏ	0	0	0*	<u> </u>	
	NS35CL NS35AL	48 48	70 70	77 108	90 121	34 34	34 500 52 500	8		8		<u> </u>	
	NS35JM	48	100	77	90	34	34 500	ŏ		ŏ		$\overline{}$	
	NS35EM	48	100	108	121	34	52 500	ŏ		0		Ŏ	
	LW17EL	17	60	51.4	61.6	33	5 600	0	-	0	0*	0	
134/	LW21EL	21	68	58.8	71.4	37	6 450	0		0	0*		
LW	LW27EL LW35EL	27 35	80 120	74 108	86.6 123	42 69	12 800 33 000	0			0	0	
	LW50EL	50	162	140.6	155.6	90	61 500	ŏ		Ŏ			
	PU09TR	10	20	30	36.4	9	1 490	ŏ		ŏ		0	
	PU09UR	10	20	41	47.4	9	2 100	Ŏ		Ŏ		Ŏ	
PU	PU12TR	13	27	35	42	12	2 830	0		0		<u> </u>	
	PU12UR PU15AL	13 16	27 32	48.7 43	55.7 51.2	12 15	4 000 5 550	0		0		0	
	PU15BL	16	32	61	69.2	15	8 100	ŏ		Ö		$ \overset{\sim}{\circ}$	
	LU05TL	6	12	18	24.4	5	545	Ŏ		Ŏ			
	LU07AL	8	17	20.4	29.4	7	1 090	0		0			
	LU09AL,TL	10	20	26.8	34.2	9	1 760	0	0	0	0	0	
	LU09AR,TR LU09BL,UL	10	20	30 41	36.4 47.4	9	1 490 2 600	0	0	0		0	
LU	LU12AL,TL	13	27	34	41	12	2 830	ŏ	Ö	ŏ	ŏ	ŏ	
	LU12AR,TR	13	27	35.2	42.2	12	2 830	Ō		Ō		Ō	
	LU12BL,UL	13	27	47.5	54.5	12	4 000	0	0	0	0	0	
	LU15AL LU15BL	16 16	32 32	43.6 61	51.8 69.2	15	5 550 8 100	0	00	0	*		
	PE09TR	12	30	39.8	46.8	15 18	3 000	Ö		0	0.	<u> </u>	
	PE09UR	12	30	51.2	58.2	18	4 000	ŏ		ŏ		ŏ	
PE	PE12AR	14	40	45	53	24	4 350	Ö		0		Ō	
	PE12BR	14	40	60	68	24	5 800	0		0		<u> </u>	
	PE15AR PE15BR	16 16	60 60	56.6 76	66.2 85.6	42 42	7 600 10 300	0		0			1
	LE05CL	6.5	17	20	85.6	10	595	l ŏ		0			
	LE05AL	6.5	17	24	-	10	725	ŏ		ŏ			
	LE07SL	9	25	22.4	28.4	14	980	Ó	0	Ŏ	0*		
	LE07TL	9	25	31	37	14	1 580	Ŏ	00	0	0*		
	LE07UL LE09CL,SL	9	25 30	42 26.4	48 33.4	14 18	2 180 1 860	0	0	0	<u></u>		
	LE09CL,SL LE09AL,TL	12	30	39	33.4 46	18	3 000	Ö	0	0	0*	0	
	LE09AR,TR	12	30	39.8	46.8	18	3 000	ŏ		ŏ	Ŭ	ŏ	
LE	LE09BL,UL	12	30	50.4	57.4	18	4 000	Ö	0	Ō	0*	Ō	
	LE12CL	14	40	30.5	38.5	24	2 700	<u> </u>	00	0	0	<u> </u>	
	LE12AL LE12AR	14 14	40	44 45	52	24 24	4 350	0		0	0	0	
	LE12AR LE12BL	14	40	45 59	53 67	24	4 350 5 800	\vdash	0	Ö		0	
	LE15CL	16	60	41.4	51	42	5 000	ŏ	ŏ	ŏ	ŏ	ŏ	
	LE15AL	16	60	55	64.6	42	7 600	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	
	LE15AR	16	60	56.6	66.2	42	7 600	Q _		0		<u> </u>	
	LE15BL LH08AN	16 11	16	74.4 24	84 31	42 8	10 300 1 240	0		0	0		
LH	LH10AN	13	20	31	40	10	2 250	Ö					
	LH12AN	20	27	45	54	12	5 650	Ö	0	ŏ	0*	0	

^{*}Seals are not applicable in high-temperature environments. Contact NSK for details. \bigcirc : Made to Order (If blank, consult with NSK)

1. Corrosion-Resistant Ball Screws and NSK Linear Guides (Fluoride Low-Temperature Chrome Plating)

NSK Linear Guides and ball screws are used in industrial machinery, semiconductor production, flat panel display manufacturing equipment, and more. Preventing rust from developing in these applications is crucial, particularly for machines around water such as part/device washers and for semiconductor/FPD manufacturing equipment involved in chemical wet processing.

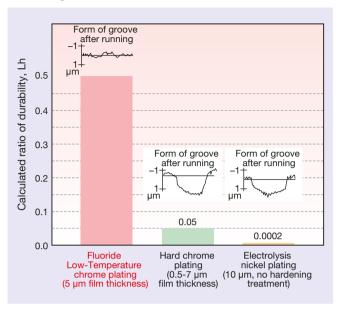
NSK applies a fluororesin coating to an electrolytic black plating (flouride low-temperature chrome plating) on these linear guides and ball screws for optimal rust resistance.

Fluoride Low-Temperature Chrome Plating

Electrolytic rust-resistant black plating + fluororesin coating

- Black plating: treated to form a stable thin film (1-2 µm), which is a form of black chrome galvanization
- A fluororesin coating is applied to this film to enhance corrosion resistance
- enables stable, accurate control
- factors that might adversely affect the accuracy of parts
- Low-Temperature treatment with no hydrogen brittleness Outstanding durability on rolling surfaces, compared with other surface treatments
- Thin-film and high corrosion-resistance properties reduce More economical than other surface-treated or stainless steel products

Note: Avoid using organic solvents, which may degrade the treatment's rust prevention properties.


Test results for corrosion resistance to humidity

Cha	aracte	Type	Fluoride Low-Temperature chrome plating	Hard chrome plating	Electrolysis nickel plating	SUS440C	Standard product
		Upper face	(Grinding) B	(Grinding) B	(Grinding) A	(Grinding) C	(Grinding) D
	rust	Side face	(Grinding) A	(Grinding) A	(Grinding) A	(Grinding) C	(Grinding) E
	of	Bottom face	(Grinding) A	(Grinding) A	(Grinding) A	(Grinding) C	(Grinding) E
	Level	End face	(Cutting) A	(Cutting) C	(Cutting) A	(Cutting) C	(Cutting) E
		Chamfer, Grinding off	(Drawing) A	(Drawing) D	(Drawing) A	(Drawing) C	(Drawing) E
Rust prevention	TeRe	conditions esting machine: Dabaiespeck high- temperature and high- humidity vessel emperature: 70 °C elative humidity: 95% me: 96 hours		O			Ö
	te co To	me to/from target emperature and humidity onditions. o target: 5 hours fter target: 2 hours					
		Film thickness	5 μm	0.5–7 μm	10 μm	_	_

Surface treatment durability test results for linear guides

Comprehensive evaluation

	Available length	Rust resistance	Stable quality	Durability	Cost
Fluoride Low- Temperature chrome plating	© (4 m)	0	0	0	Low
Hard chrome plating	△ (2 m)	0	×		High
Electrolysis nickel plating	© (4 m)	0	Δ	×	High
SUS440C	○ (3.5 m)	0	0	0	High

O: Superior

○: Good

△: Not ideal

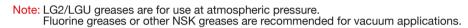
 \times : Problem—restricted use

Test results for corrosion resistance to chemical exposure

Test conditions— Base material of rail: equivalent to SUS440C Chemical concentration: 1 normal (1N)

Fluoride Low-Temperature chrome plating	Exposure type	Hard chrome plating	No surface treatment	
0	24-hour soaking Nitric acid	0	3	
	24-hour soaking Hydrofluoric acid	O	0	
	72-hour vapor Hydrochloric cleansing liquid HCI: H ₂ O ₂ : H ₂ O = 1:1:8			
0	Hydrochloric liquid (soaking)	0	A	
0	Sulfuric acid (soaking)	0	×	
0	Ammonia or sodium hydroxide	0	Δ	

- \bigcirc : No damage \triangle : Partial damage to surface
- ▲: Damage to entire surface
- \times : Corrosion


Specifications, Operating Instructions, and Technical Data for SPACEA™ Series Ball Screws and NSK Linear Guides

2. LG2/LGU "Clean" Grease

LG2 and LGU "clean" greases are utilized for low-dust specifications of NSK products such as linear guides, ball screws, Monocarriers, Megatorque Motors, XY modules and XY tables. These greases are excellent for cleanrooms thanks to their lower particle emissions and better resistance to corrosion than fluorine greases. Their proven track record makes them particularly suitable for semiconductor production equipment.

Features

- Low-dust characteristics that outperform fluorine greases
- Low torque—less than 20% that of fluorine greases
- Over ten times more durable than fluorine greases
- Superior rust prevention superior to fluorine greases

Properties

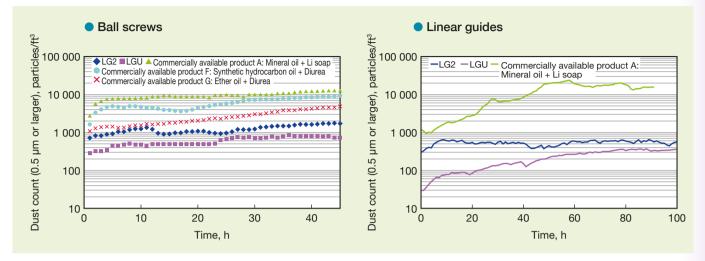
Operating environment	For use exclusively at	From atmospheric pressure up to vacuum	
Product	LG2	LGU	Commercially available fluorine grease K
Base oil	Mineral oil and synthetic hydrocarbon oil	Synthetic hydrocarbon oil	Fluorine oil
Thickener	Lithium soap	Diurea	PTFE
Kinematic viscosity (mm²/s, 40 °C)	32	95.8	270
Consistency	199	201	280 ± 15
Maximum operating temperature, °C	up to 70	up to 120	up to 200

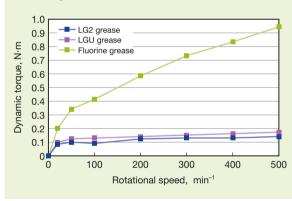
- LG2 and LGU are NSK-developed greases.
- LGU grease is free of metallic elements.

Comprehensive evaluation

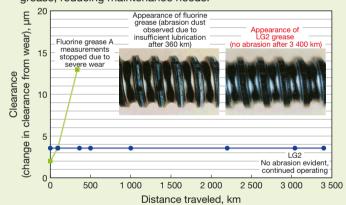
Characteristics	LG2/LGU	Fluorine grease	Ordinary grease	
Low particle emission	esion O/A		△/×	
Torque	0	×	○/△	
Durability	0	Δ/×	0	
Rust prevention	Rust prevention		0	

○: Excellent △: Poor >


×: Not recommended


Extremely low particle emissions

LG2/LGU greases offer stable low-dust characteristics over a longer period than fluorine greases.


Stable low-torque characteristics

LG2/LGU greases significantly reduce the burden on motors running at high speeds by achieving torque less than 20% that of fluorine greases (ball screws, at 500 min⁻¹).

Long life

LG2/LGU greases not only have the same durability as ordinary greases, they last over 10 times longer than flourine grease, reducing maintenance needs.

Superior rust prevention

LG2/LGU greases provide high reliability by preventing rust.

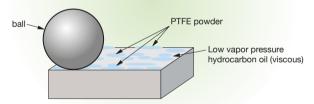
Rusting

Specifications, Operating Instructions, and Technical Data for SPACEA™ Series Ball Screws and NSK Linear Guides

3. NSK Lubricant E-DFO

In a world first, E-DFO lubricant forms a hydrocarbon oil film directly on the raceway surfaces of ball screws, linear guides, and rolling elements. In vacuum environments, this results in lower outgassing than with other lubricants like fluorine grease and lower particle emissions and longer life than with existing fluororesin coatings or solid lubricants.

Features


Better retains lubrication through low-vapor-pressure oil and adsorbent thin-lubricant film technology.

- Low particle emissions and superior outgassing compared to conventional fluororesin-coated and solid lubricant products
- Far more durable than fluororesin-coated products

Structural illustration

 Low-vapor-pressure hydrocarbon oil coating that exhibits the properties of liquids and solids

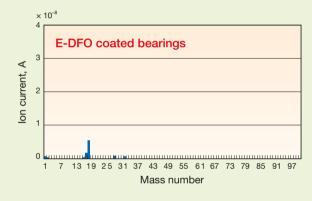
 Flake-shaped PTFE powder increases the surface area for adhered lubricant, increasing lubricant retention.

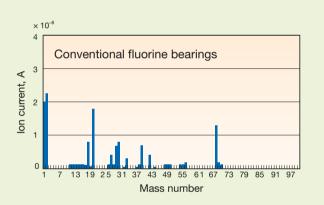
Notes:

The E-DFO coating is a clear, low-vapor-pressure hydrocarbon-based, semi-dry coating that is viscous on the surface.

- 1. Handling: Open the package immediately before use in a clean space with the lowest possible humidity (less than 60%). Handle with cleanroom gloves; do not touch the product with bare hands.
- 2. Storage: If the sealed product is not used for a long period or is not used immediately after opening, store in a clean, dry container such as a desiccator or vacuum chamber to prevent rust and deterioration. Do not use slushing oil or anti-tarnish paper on the product.
- 3. Do not clean: E-DFO coated products do not require cleaning. Do not clean or wipe the coating on the rolling surface—this will directly affect the lubricating function.
- 4. Do not apply new lubricant: E-DFO coated ball screws and linear guides do not require additional lubricant. Do not use with the NSK K1 lubrication unit, as this will degrade E-DFO's lubricating properties.
- 5. Installation position: When using ball screws and linear guides vertically, use an oil receiver under the screw shafts and rails as the E-DFO coating may drip.

Comprehensive evaluation


		Performance		Compatible operating environment		
Lubricant	Durability	Particle emissions	Outgassing	Operating environment	Ball screws	Linear guides
E-DFO	0	0	0	Atmospheric pressure, vacuum	•	•
Fluororesin	Δ		0	Atmospheric pressure, vacuum	_	_
MoS ₂	0	△/○	0	Atmospheric pressure, vacuum	•	•
Commercially available fluorine grease	0	0	Δ	Atmospheric pressure, vacuum	•	•

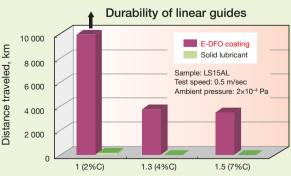

- O: Excellent
- ○: Good
- △: Satisfactory
- : Applicable

Low outgassing

Outgassing in high-temperature environments (example bearing measurements)

Outperforms conventional fluorine-coated bearings.

Long life


Durability of ball screws

E-DFO coating extends the operating life of ball screws compared to fluororesin coating.

Durability of linear guides

E-DFO coating extends the operating life of linear guides compared to solids lubricants.

Maximum contact surface pressure between balls and rolling surface, GPa

4. Compact FA-USS Model: High-Accuracy type for Cleanrooms

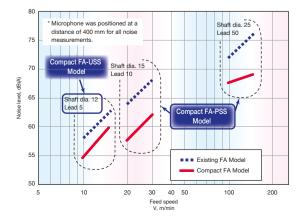
A precision Model ideal for semiconductor and flat panel display manufacturing equipment, inspection equipment, and other applications with clean needs.

Applications

Applications where cleanliness is required, such as semiconductor manufacturing equipment, flat panel display manufacturing equipment, inspection equipment etc.

Specifications

· Accuracy grade: C3 (JIS)

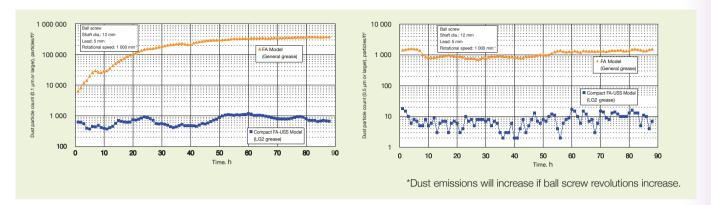

· Axial play: 0 (Oversize ball preload)

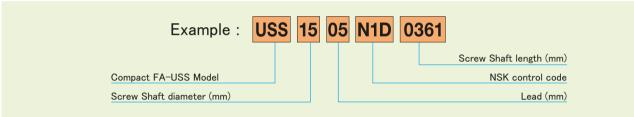
Features of the USS Model

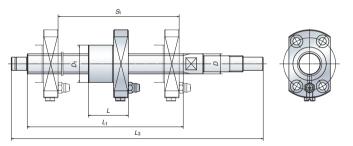
- · High-speed, low-noise, and compact ·· Thanks to end-deflector recirculation system.

Low-noise

Uses an end-deflector recirculation system to reduce noise by 6 dB compared to tube recirculation while also reducing vibration.






Low-dust emissions

The USS Model with NSK LG2 Grease achieves a dust count 1/100 that of the FA Model with general lithium-based grease.

Compact FA-USS Model reference number

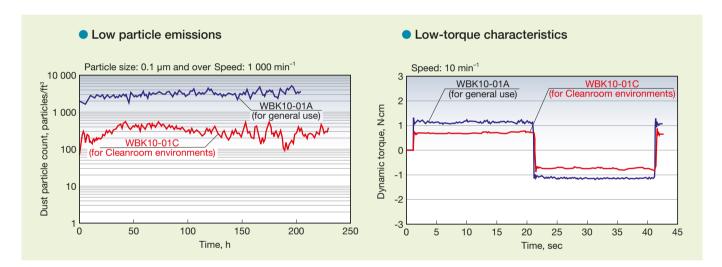
Specifications/Performance

Unit: mm

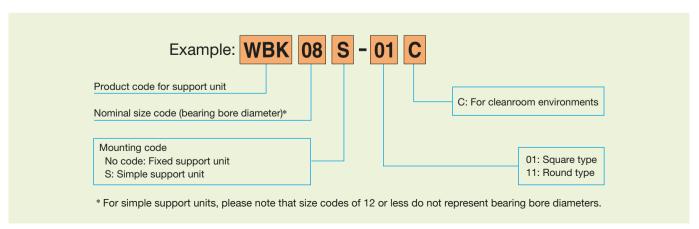
	0	1 1	Basic load	ratings (N)	Str	oke	Nut dim	ensions	Screw Shaft	dimensions	Lea	d accur	асу	Dynamic	Damaiaailala
Reference no.	Screw Shaft	Lead	Dynamic	Static	S	St	Diameter	Overall length	Threaded length	Shaft length	Travel compensation	Deviation	Variation	preload torque *1	Permissible rotational speed
	dia. d	1	Ca	C _{0a}	Nominal	Max.	D1	L	L ₁	L ₃	Т	ep	V _u	(N·cm)	(min ⁻¹) * ² Fixed-Simple
USS1005N1D0221					100	133			162	221		0.010	0.008	0.2 ~ 1.8	
USS1005N1D0321	10		3 420	4 840	200	233	23	29	262	321		0.012	0.008	0.2 ~ 2.0	
USS1005N1D0521					400	433			462	521		0.015	0.010	0.2 ~ 3.0	
USS1205N1D0221					100	130			160	221		0.010	0.008	0.2 ~ 1.8	
USS1205N1D0321	12	5	3 750	5 810	200	230	24	30	260	321	0	0.012	0.008	0.2 ~ 2.0	5 000
USS1205N1D0621		5			500	530			560	621	U	0.016	0.012	0.2 ~ 3.0	
USS1505N1D0261					100	159			189	261		0.010	0.008	0.2 ~ 5.0	
USS1505N1D0361	15	15 6 410	6 410	10 100	200	259	28	30	289	361		0.012	0.008	0.2 ~ 5.0	
USS1505N1D0561	15		0 410 10	10 100	400 459	459	_ ∠8	30	489	561		0.015	0.010	0.2 ~ 6.0	
USS1505N1D0761					600	653			689	761		0.018	0.013	0.2 ~ 6.0	4 130

^{*1.} Indicates ball screw preload control value. Approximately 0.5 N·cm of torque is added due to thin plastic seals.

NSK B20

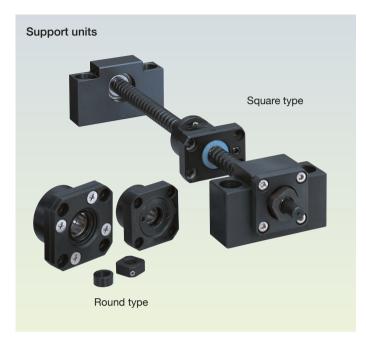

^{*2.} Contact NSK if permissible rotational speed will be exceeded.

5. Support Units for Cleanroom Environments


Support units for cleanroom environments come equipped with all required parts such as locknuts so that they can be mounted as is with NSK ball screws with machined shaft ends. (Refer to the tables for details on ball screws with unfinished shaft ends.)

Features of Support Units for Cleanroom Environments

- Extremely low particle emissions Uses LG2 grease to achieve proven low particle emissions 1/10 those of general support units.
- Low torque Special low torque bearings reduce torque by 50% compared to general units.
- High rust prevention ······ Adopts Low-Temperature chrome plating for the housing surfaces and stainless steel for small parts


Reference numbers

Structure

- Two types are available: a square floor-mounted type for surface mounting and a round type for fitting into the body.
- While the square type consists of a fixed support side unit (motor side) for the ball screw shaft and the opposing simple support side, the round type has no simple support side housing.

4 3		5	6 7	
F	ixed support side	Simple support side		
Part No.	Name of part	Part No.	Name of part	
1)	Bearing housing	⑤	Bearing housing	
2	Spacer	6	Bearing	
3	Locknut	7	Snap ring	
4	Set screw with set piece			

• Bearing type, grease, housing surface treatment, and small parts material

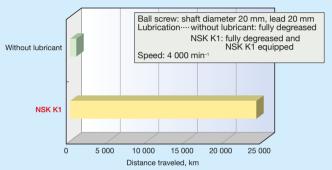
Bearing, grease	Surface treatment	Set screw and snap ring material
Special bearings, LG2	Low-Temperature chrome plating	Stainless steel

Specifications

	Fixed suppor	Simple support side support unit					
	A	xial direction	1	Maximum			Radial direction
Reference No.	Basic dynamic	Load limit	Stiffness	starting torque	Reference No.	Bearing	Basic dynamic
	load rating C _a (N)	(N)	(N/µm)	(N·cm)		Reference No.	load rating C (N)
WBK08-01C (square)	3 100	1 100	36	0.52	WBK08S-01C	606VV	2 260
WBK08-11C (round)	3 100	1 100	36	0.52	WDK005-01C	60677	2 200
WBK10-01C (square)	4 250	1 364	50	1.1	WBK10S-01C	608VV	3 300
WBK10-11C (round)	4 250	1 304	50	1.1	WBK103-01C	000 V	3 300
WBK12-01C (square)	4 700	2 443	57	1.2	WBK12S-01C	6000VV	4 550
WBK12-11C (round)	7 700	2 743	37	1.2	WDI(123-010	0000 V	7 330
WBK15-01C (square)	5 100	2 757	63	1.3	WBK15S-01C	6002VV	5 600
WBK15-11C (round)	3 100	2131	03	1.3	WBK133-01C	000277	3 000

6. NSK K1™/NSK K1-L™ Lubrication Unit

(1) Ball screws equipped with NSK K1[™] and linear guides equipped with NSK K1[™]/NSK K1-L[™] for general industry


NSK has developed specialized lubrication units for ball screws and linear guides. Ball screws with NSK K1 and linear guides with NSK K1/NSK K1-L offer maintenance-free performance over a long period. (See pages B25–26 for details on NSK K1 in linear guides for food processing machinery/medical devices.)

Features of Ball Screws with NSK K1

Durability tests without lubricant

A ball screw without lubricant was damaged after operating over 8.6 km, but the ball screw equipped with NSK K1 operated for more than 20 000 km.

Notes at bottom page also apply to ball screws with NSK K1.

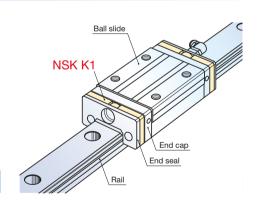
Features of Linear Guides with NSK K1

- The NSK K1 lubrication unit greatly enhances lubrication in NSK Linear Guides.
- A newly developed porous synthetic resin contains ample lubricant to ensure extended maintenance-free performance
- Easy installation: mounts to the inside of the standard-end seal

NSK K1-L for improved performance

- NSK K1-L improves on the original NSK K1 with a higher capacity supply of lubricating oil, enabling even longer maintenance-free operation.
- NSK K1-L is applied to NH, VH, NS, and HS models.

Notes:


To maintain optimal performance of NSK K1/NSK K1-L note the following:

Operating temperatures: Maximum operating temperature: 50°C
 Maximum momentary operating temperature:

2. Avoid contact with: Or

Organic solvents with degreasing properties, such as hexane and immersion in white kerosene thinner or anti-corrosive oil

(containing white kerosene)

Performance

Durability test without lubricant

A linear guide without lubricant was damaged after a short period, but the K1-equipped linear guide covered a distance exceeding 50 000 km.

Conditions

Linear guide: LH30AN (preload Z1)

Lubrication... without lubricant: fully degreased NSK K1: fully degreased and NSK K1 equipped

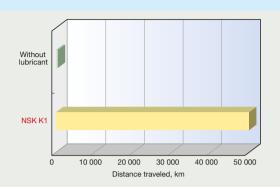
Water-immersion test

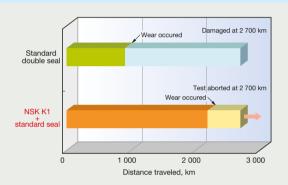
In a water-immersion test run once a week for 24 hour intervals, the ball groove of a linear guide fitted with standard double seals quickly showed wear and damage at 2 700 km. By comparison, the linear guide equipped with NSK K1 showed only 1/3 as much wear, confirming significant lubricating efficacy.

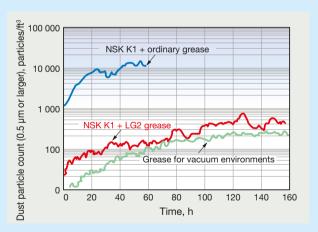
Conditions

Linear guide: LS30 stainless steel (preload Z1)

Water immersion: Run once a week for 24 hours, fully immersed in water Lubrication: Fully grease-packed for food processing machinery Speed: 24 m/min

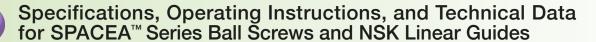

Dust generation


The combination of NSK K1 and LG2/LGU "clean" greases (low-particle-emission grease) produced no more dust than conventional grease for vacuum environments.


Conditions Linear guide: LS20 Speed: 36 m/min

Notes: Compatibility of NSK K1 with oils and chemicals

The table on the right shows test results after immersing NSK K1 in chemicals and oils at 40° C. NSK K1 was found to be stable when in contact with grease and cutting lubricants, and use in combination with these substances presents no problems. However, exposure to chemicals with degreasing properties, such as white kerosene and hexane, quickly removed oil content from the surface of the seals, suggesting that the lubricating effect may deteriorate under these conditions.



Chemicals/Oil	Compatibility
Cutting lubricants (water-based, oil-based)	А
Grease (mineral oil-based, ester-based)	Α
Rust preventives (without solvents)	А
Rust preventives (with solvents)	В
White kerosene	В
Hexane	С

A: Compatible B: Use sparingly, for brief periods only C: Incompatible

6. "NSK K1™" Lubrication Unit

(2) Linear guides equipped with NSK K1[™] for food processing and medical equipment

Thanks to a new material seal, NSK K1 for food processing and medical equipment is safe and FDA-compliant. In NSK K1, a newly developed, porous synthetic resin provides continuous and abundant lubricant. The unit is also easy to install inside standard end seals made of rubber. After success in general industry (see Pages B23-B24), we utilized special materials to allow use in food processing and medical equipment.

Features

Safe to handle

Uses highly safe materials that are compliant with the US Food and Drug Administration's (FDA) hygiene standards for food additives

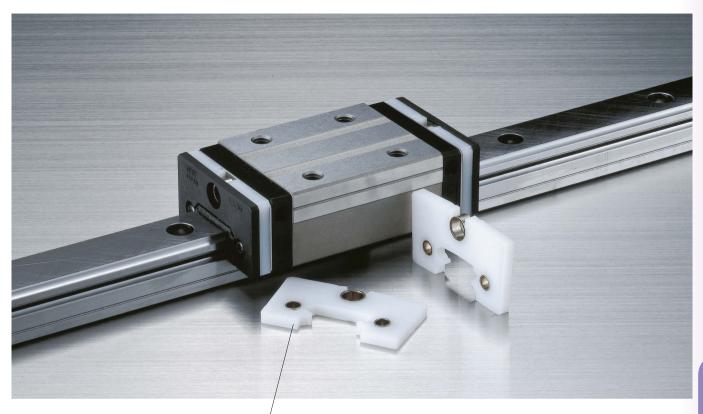
Environmentally sound

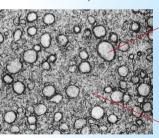
A newly developed porous synthetic resin provides a controlled supply of lubricant, preventing the spread of oil in sanitary environments

NSK K1 Ball slide NSK K1 End cap End seal

Notes:

To maintain optimal performance of NSK K1 in linear guides, note the following:


1. Operating temperatures: Maximum operating temperature: 50 °C Maximum momentary operating temperature: 80 °C


2. Avoid contact with: Organic solvent with degreasing properties, such as hexane and thinner Immersion in white kerosene or anti-corrosive oil (with white kerosene ingredients)

Magnification of NSK K1

100 µm

Portion containing high proportion of polyolefin

Polyolefin is used for packaging food in supermarkets, replacing dioxingenerating vinyl chloride.

Portion containing high proportion of lubricating oil

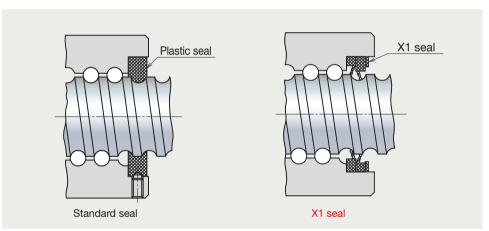
Specifications, Operating Instructions, and Technical Data for SPACEA™ Series Ball Screws and NSK Linear Guides

7. NSK High-Performance Seals

Ball screws and linear guides face tough environments contaminated by wood particles, rubber fragments, graphite/ceramic powders, welding spatter, and more.

Recently, dust resistance has become increasingly significant as covers are eliminated to reduce costs and make equipment more compact.

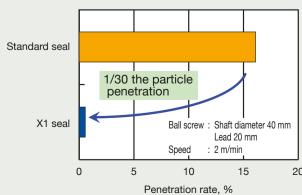
Though our conventional seals resist dust, NSK has developed high-performance seals with even better resistance to dust to respond to this need.


Linear guide equipped with high-performance seal

 Applications: Woodworking machinery (photo at right), tire buffing machinery, welding lines, graphite processing machinery, laser machinery

Features of Ball Screws Equipped with X1 Seals

- High dust-resistance ········ A specialized seal design improves sealing performance to better resist contaminants and increase durability.
- Superior grease retention. Ball screws with X1 seals have a double seal structure combining a dust-resistant seal and grease-retaining seal to improve grease retention.
- Low torque design An optimized seal shape and low-friction materials achieve low torque and low heat generation.


Wood chips

Note: The nut with an X1 seal is slightly longer than the standard.

Performance

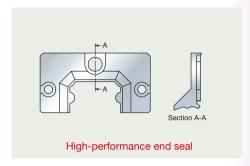
Particle penetration rate test

Iron powder 37- 148 μm in article was mixed with AS2 grease on the screw shaft. After the nut completed a stroke, particle penetration through the X1 seal was found to be less than 1/30 that through a standard seal.

Penetration rate, % (Rate that foreign matter passed through the seal)

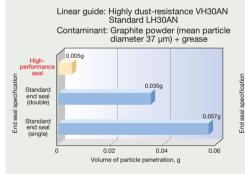
Appearance after particle penetration rate test

All contaminants adhering to the screw shaft are swept away after passage through the X1 seal.



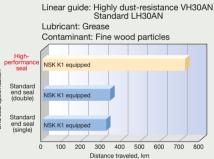
Features High-Performance Seals for Linear Guides

- High dust-resistance ········ Sealed with three lips that extend from the main body of the seal
- Long life......Incorporates the NSK K1-L lubrication unit to enhance dust-resistance and durability

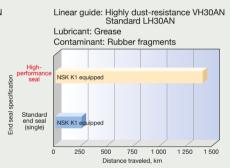


Note: Linear guides with high-performance seals come standard with the NSK K1-L lubrication unit. The seals will jut out slightly, making slide length slightly longer than with standard seals. See the table below for details.

Performance


High dust-resistance

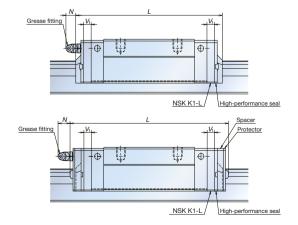
Particle penetration through the high-performance seal is less than 1/10 that through a standard end seal (single).



Long life

Improved resistance to contaminants achieves durability twice that of standard seals in an environment with fine wood particles and over five times that in an environment with rubber fragments.

Unit: mm



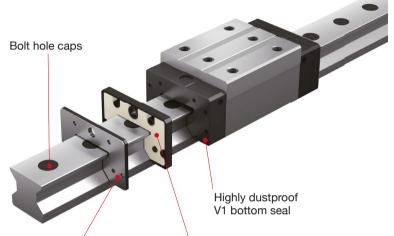
Specifications

			Unit: mm	
Model No.		Ball slide length L	Grease fitting extrusion N	
VH15	AN/EM BN/GM	70.6 (77) 89.6 (96)	1 (8.2)	
VH20	AN/EM BN/GM	87.4 (94.2) 109.4 (116.2)	11.1 (12.3)	
VH25	AL/AN/EM BL/BN/GM	97 (104.4) 125 (132.4)	9.6 (12.9)	
VH30	AL/AN EM BL/BN/GM	104.4 (114.8) 117.4 (127.8) 143.4 (153.8)	11.4 (14.2)	
VH35	AL/AN/EM BL/BN/GM	128.8 (139.2) 162.8 (173.2)	10.9 (13.7)	
VH45	AL/AN/EM BL/BN/GM	161.4 (174.2) 193.4 (206.2)	12.5 (14.1)	
VH55	AL/AN/EM BL/BN/GM	185.4 (198.2) 223.4 (236.2)	12.5 (14.1)	

Dimensions in parentheses apply when equipped with a protector.

Dimensions of a linear guide equipped with high-performance seals and NSK K1-L

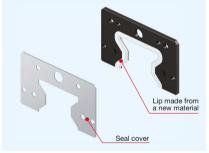
Data shown reflect test results. NSK offers no warranty for seal performance in actual machinery. Since performance is affected by the usage environment and lubrication conditions, we highly recommend using covers or other measures to protect machinery from contaminants.


Specifications, Operating Instructions, and Technical Data for SPACEA™ Series Ball Screws and NSK Linear Guides

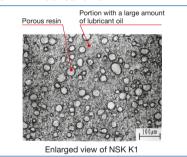
Features of Roller Guides Equipped with Highly Dustproof V1 Seals and V1 Bottom Seals

- Excellent for machine tools Built on the RA Series, with a proven track record in the industry.
- Abrasion resistance ······· Uses the V1 highly dustproof seal made of new materials and a shape optimized to resist dust. A bottom V1 seal is also available for some models (RA35, RA45, RA55, RA65).

Roller guides equipped with highly dustproof V1 Seal



Bolt hole caps


These caps prevent foreign matter from building up inside the rail mounting holes. These are standard parts.

Highly dustproof V1 seal

Thanks to new materials and optimized shapes, V1 seals achieve better abrasion resistance and prevent foreign matter from entering the slide for long periods.

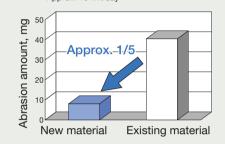
NSK K1[™] lubrication unit

Made of porous synthetic resin containing a large amount of lubrication oil. When moved to contact the raceway surface, NSK K1 supplies fresh lubricating oil.

Rail cover (optional)

Covers the top surface of the rail and prevents foreign matter from entering the rail mounting holt holes

Note: Linear guides with V1 seals come standard with the NSK K1 lubrication unit. This makes the slide length slightly longer with standard seals. See the table on Page B30 for details.

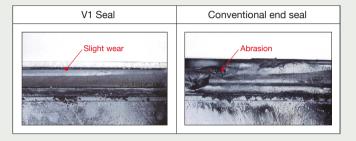


Performance

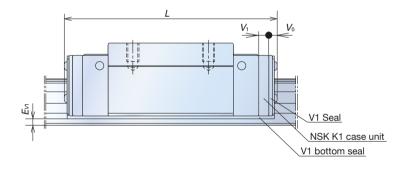
Abrasion resistance

Highly abrasion-resistant material is used for the seal lip.

> Taper abrasion test (ASTMD1044) Load: 9.8 N Average speed: 29.7 m/min, Approx. 40 km/day



The durability of the seal lip has been greatly improved by adopting new materials and optimizing the seal lip shape.


Durability test under extreme conditions - no lubrication

Test sample: RA35

Lubrication: No lubrication (on the seal)
Travel speed: 30 m/min Travel distance: 40 km

Dimensions

Unit: mm

Model No.	Roller slide length	Roller slide type	Standard roller slide length L	Roller slide length equipped with V1 seal and NSK K1 L	Slide bottom face height equipped with V1 bottom seal E_{V1}	Thickness of V1 seal V_0	Thickness of K1 case unit V_1
RA25	Standard	AN, AL, EM	97.5	111.3		5.1	5
nazo	Long	BN, BL, GM	115.5	129.3	-	5.1	5
RA30	Standard	AN, AL, EM	110.8	126.8		5.4	6
nasu	Long	BN, BL, GM	135.4	151.4	-	5.4	U
RA35	Standard	AN, AL, EM	123.8	140.8	. 0.7	5.4	6.5
nass	Long	BN, BL, GM	152	169	min 3.7	5.4	
RA45	Standard	AN, AL, EM	154	173.2	min 5.2	6.6	7
na45	Long	BN, BL, GM	190	209.2	11111 5.2	0.0	,
DAFE	Standard	AN, AL, EM	184	203.2	main C O	6.6	7
RA55	Long	BN, BL, GM	234	253.2	min 6.2	6.6	,
DAGE	Standard	AN, EM	228.4	251.2	min 10.0	9.0	7.5
RA65	Long	BN, GM	302.5	325.3	IIIII IU.Z	min 10.2 8.9	

Since sealing (resistance to foreign matter) is affected by usage and the lubrication environment, please conduct an evaluation test for your particular application.

8. Ball Screws and NSK Linear Guides for High-Temperature Environments

NSK has developed heat-resistant ball screws and linear guides in response to high-temperate operating environments. Our products serve a variety of high-temperature applications, such as semiconductor and flat panel display production, glassware manufacturing, and automobile assembly lines.

Features Linear Guides for High-Temperatures

Maximum operating temperature: 150 °C; maximum momentary temperature: approximately 200 °C (Standard models: 80 °C; maximum momentary temperature: approximately 100 °C)

• All-stainless-steel specification: All-stainless-steel products are excellent at resisting not only heat, but also

corrosion and chemicals.

These can also be used in vacuum environments.

Applicable models and sizes

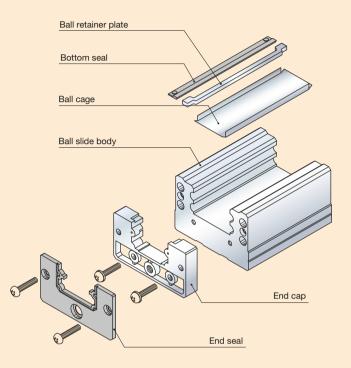
Models and model numbers not listed are also available upon request.

Assolia de la Mandal	Size codes*				
Applicable Model	Standard material specification	All-stainless-steel specification (except for seals)			
NH (high load capacity/aligning)	20, 25, 30, 35, 45, 55	20, 25, 30			
NS (compact low type)	15, 20, 25, 30	15, 20, 25, 30			
LW (broad type)	17, 21, 27	_			
LU (miniature)	09, 12, 15	09, 12, 15			
LE (miniature broad type)	-	09, 12, 15			

Note: *Example of a basic code

Model Size code······Indicates the rail width or assembly height.

For details, see our "Precision Machine Components" catalog (No. E3162)



Structure

Special high-carbon steel with excellent rolling durability or martensite stainless steel with high cleanliness are used for the rails, ball slide, and balls. A heat- and chemical-resistant fluororubber is used for the seal, while corrosion-resistant austenite stainless steel is used for the remaining components.

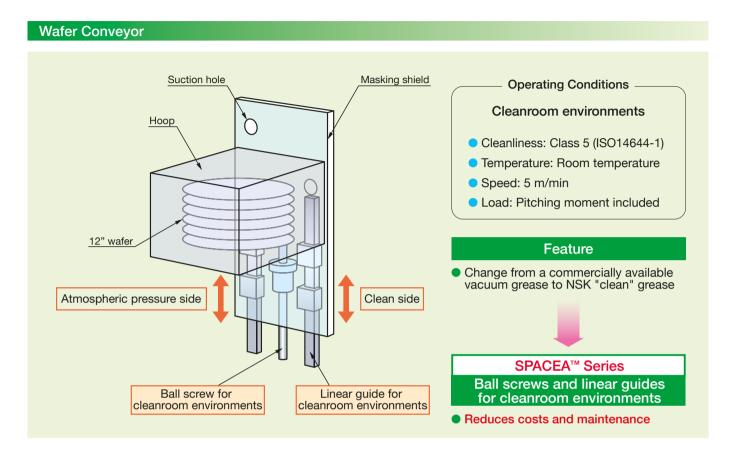
Heat-resistant linear guides

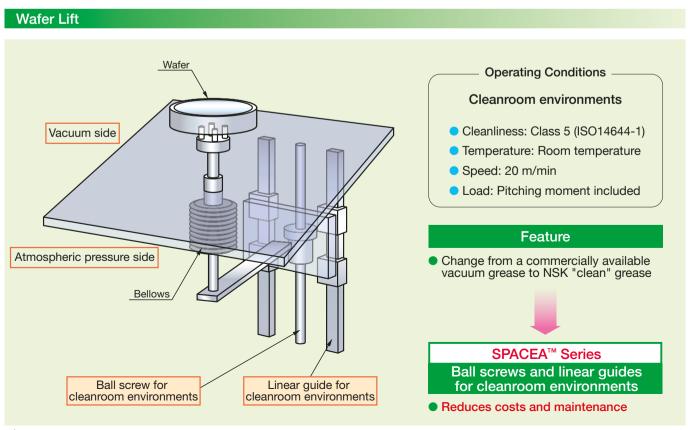
Materials used for components

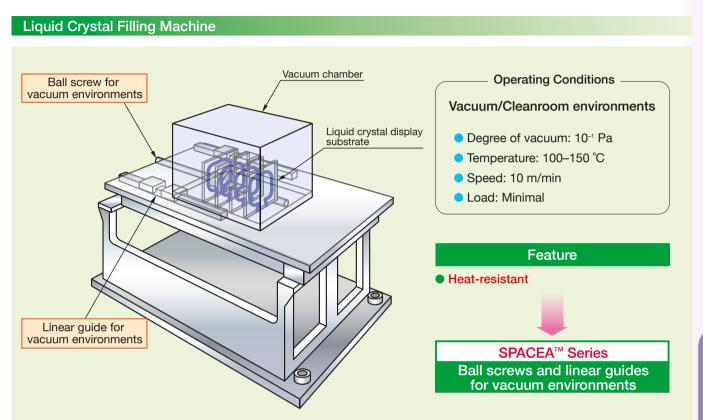
Linear guide component	Material specification
Rail, ball slide	Martensite stainless steel
Ball	SUS440C
End cap, recirculation components of cage, small screws	Austenite stainless steel
Seal	Fluororubber, etc.

Features of Ball Screws for High Temperatures

Maximum operating temperature: 150 °C maximum momentary temperature: approximately 200 °C


Materials used for components


Ball screw component	Material specification
Shaft, nut	Martensite stainless steel
Ball	SUS440C
Recirculation components	Austenite stainless steel


Applications for SPACEA™ Series Ball Screws

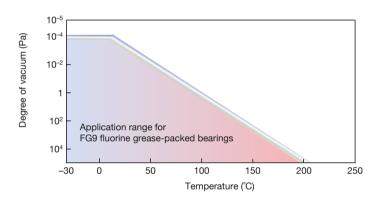
 Semiconductor Manufacturing Equipment/Flat Panel Display Manufacturing Equipment

Ion Implanting Equipment

This section provides descriptions of the physical properties of lubricants and materials used in SPACEA™ Series bearings, ball screws, and linear guides. Reference values for physical characteristics are provided for your convenience.

Please use the "Specification Inquiry" page at the back of catalog when contacting NSK. We will do everything possible to find a SPACEA product that suits your needs.

A		100		
Αp	per	ıdı	ices	



- 1. Properties of SPACEA™ Series Greases
- 2. Characteristics of Representative Solid Lubricants
- 3. Characteristics of Metallic Materials
- 4. Characteristics of Ceramic Materials
- 5. Physical Properties of Plastic Materials
- 6. Properties of Commercially Available Fluorine Lubricants (Krytox)
- 7. Properties of Commercially Available Fluorine Lubricants (Fomblin oil, Klübertemp / Klüberalfa grease)
- 8. Properties of Commercially Available Fluorine Lubricants (Barrierta, NOXLUB, Demnum)
- 9. Specification Inquiry for SPACEA Series Bearings

1. Properties of SPACEA™ Series Greases

Operating environment	Grease	Atmospheric pressure, vacuum	Maximum operating temperature °C	Cleanliness(1)	Base oil	Thickener	Kinematic viscosity mm²/s, 40 °C
Atmospheric pressure	NS7	Atmospheric pressure	100	_	Polyol ester oil + Diester oil	Lithium soap	26
Atmospheric pressure,	LG2	Atmospheric	70	0	Mineral oil and synthetic hydrocarbon oil	Lithium soap	32
Cleanroom	LGU	pressure	120	Class 5-6 (100–1 000)	Synthetic hydrocarbon oil	Diurea	96
From atmospheric pressure up to vacuum, Cleanroom	FG9	See the applicati Grease-Packed	on range for FG9 Bearings below.		Fluorine oil	PTFE	200
Atmospheric pressure, high-temperature	KPM	Atmospheric pressure	230	_	Fluorine oil	PTFE	420
Atmospheric pressure,	RLS	Atmospheric	120	_	Synthetic hydrocarbon oil	Aluminum alloy soap	150
sanitary	BLS	pressure	200	_	Fluorine oil	PTFE	415

Note (1) Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes). Cleanliness may vary depending on operating conditions, surrounding structures, and other factors.

O: Excellent

2. Characteristi	cs of	Repres	entative S	olid Lul	oricants	0	: Excellent	○: Good	d △:S	atisfactory
	Relative	Molecular	Crystal	Electric	Maximum op temperatu	perating ire °C	Coefficient	of friction	Particle	
Solid lubricant	density g/cm³	mass	structure	$\begin{array}{c} \text{resistance} \\ \Omega \cdot \text{cm} \end{array}$	Atmospheric pressure	Vacuum	Atmospheric pressure	Vacuum	Particle emissions	Outgassing
Molybdenum disulfide MoS ₂	4.8	160.07	Hexagonal crystal system	8.33 (-60 °C)	350	650	0.006-0.25	0.001–0.2	Δ	0
Tungsten disulfide WS ₂	7.4	248.02	Hexagonal crystal system	0.40 (92 °C)	425	750	0.05-0.28	0.001–0.2	Δ	0
Graphite C	2.24	12.011	Hexagonal crystal system	2.6 × 10⁻³	550	_	0.05-0.3	0.4–1.0	Δ	0
Polytetrafluoroethylene PTFE	2.2	_	Long-chain	1014	260	260	0.04–0.2	0.04-0.2	0	
Polyimide	1.4	_	Long-chain	_	300	300	0.12	0.10	0	Δ
Gold Au	19.3	196.97	Face-centered cubic	2.2 × 10 ⁻⁶	200	200	0.2-0.5	_	Δ	0
Silver Ag	10.5	107.87	Face-centered cubic	1.6 × 10⁻⁶	_	600	_	0.2–0.3		0
Lead Pb	11.3	207.2	Face-centered cubic	2.08 × 10 ⁻⁶	100	350	0.05-0.5	0.05-0.5	Δ	0

3. Characteristics of Metallic Materials

Metallic material	Thermal expansion coefficient × 10-6 / °C	Young's modulus GPa	Hardness ⁽¹⁾ HV	Relative permeability
Bearing steel SUJ2	12.5	208	700–800	
Highly corrosion-resistant stainless steel ES1	10.8	206	650.750	
Martensite stainless steel SUS440C	10.1	200	650–750	Ferromagnetic
Highly corrosion-resistant, high hardness stainless steel ESZ	10.6	202	580–650	
Precipitation-hardened stainless steel SUS630	10.8	200	390	
Austenite stainless steel SUS304	16.3	193	150	1.04 or less

Note (1) Converted to HV (Vickers hardness) for comparison

4. Characteristics of Ceramic Materials

: Excellent	○: Good		X: Unsatisfactory
-------------	---------	--	-------------------

Item	Unit	Silicon nitride ceramics	Oxide-based ceramics	Bearing steel
Density	g/cm³	3.23	5.9	7.8
Young's modulus	GPa	330	210	208
Fracture toughness	MPa ⋅ m¹/2	6	7.5	18
Hardness (HV)	_	1 500	1 300	700
Thermal expansion coefficient	× 10 ⁻⁶ / °C	2.8	10.5	12.5
Thermal conductivity	W/m·k	31	3	50
Bending strength	MPa	900	1 100	≥2 500
Rotating capability in water	_	0	0	×
Rotating capability in acid solvents	_	Δ	0	×

5. Physical Properties of Plastic Materials

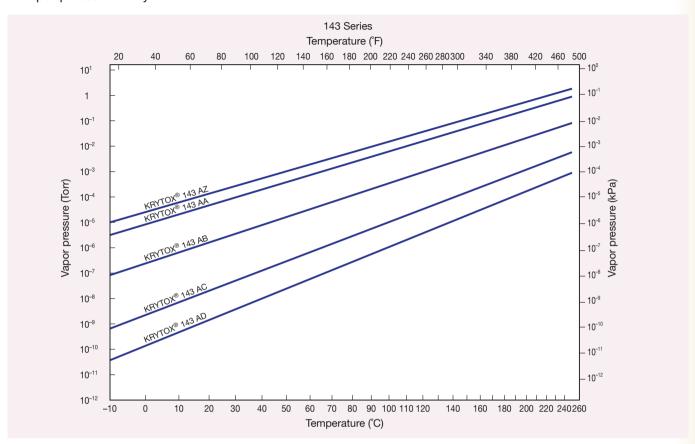
Plastic materials used for the cages of bearings for special environments are generally reinforced with carbon fibers, solid lubricants such as MoS₂, and wear-resistant additives.

Plastic	Classification(1)	Elasticity coefficient GPa	Strength GPa	Density g/cm³	Tm ⁽²⁾	Heat distortion temperature ⁽³⁾ °C
Polyphenylene sulfide (PPS)	M, C	1.4	0.155	1.64	285	>260
Polyetheretherketone (PEEK)	M, C	3.9	0.1	1.3	335	152
Heat reversible polyimide (TPI)	M, C	2.94	0.092	1.33	388	238
Tetrafluoroethylene-ethylene copolymer (ETFE)	M, C	0.88-1.37	0.04-0.046	1.7–1.76	260	74 (104)
Polyvinylidene fluoride (PVDF)	M, C	1.6	0.045	1.76	170	90 (150)
Polytetrafluoroethylene (PTFE)	С	0.40	0.028	2.16	327	- (120)
Polyamide (nylon 6-6)	M, C	3.0	0.08	1.14	264	60 (180)
Nylon 4-6	M, C	3.14	0.1	1.18	295	220

Notes (1) Classification M: Moldable C: Crystalline
(2) Tm: Melting point
(3) Heat distortion temperature values in parentheses are at 454 kPa, all other values are at 181 MPa.

6. Properties of Commercially Available Fluorine Lubricants (Krytox)

Krytox oil (Chemours)


Prod	duct	Average molecular		Kinemat m	tic visco nm²/s	,	Viscosity index	Pour point °C		(Knudser	ressure n number) a		Evaporation wt %	Density g/cm³	Range of operating temperatures
		weight	20 °C	38 °C	50 °C	100 °C	IIIdex	Ü	20 °C	38 °C	50 °C	260 °C	22 hours)	(0 °C)	(°C)
	AZ	2 060	60	24.7	_	4.1	60	-55	_	5×10⁻⁵	_	0.2	18 (149 °C)	_	_
	AA	2 210	88	35	_	5.3	96	-50	_	1×10⁻⁵	_	0.1	15 (1)	_	_
143 Series	AB	3 800	240	86	_	10.2	113	-40	_	7×10 ⁻⁷	_	4×10⁻³	1.9 (1)	_	_
001100	AC	5 940	800	270	_	25.4	134	-35	_	1×10 ⁻⁸	_	3×10 ⁻⁴	4 (260 °C)	_	_
	AD	7 480	1 540	502	_	42.4	146	-30	_	8×10 ⁻¹⁰	_	4×10⁻⁵	2 (260 °C)	_	_
4500	1506	2 160	60	_	15.5	4.1	_	-60	4×10 ⁻⁷	_	1×10⁻⁵	_	6.5 (121 °C)	1.88	_
1500 Series	1514	2 840	140	_	32	7.2	_	-54	2×10 ⁻⁷	_	3×10 ⁻⁶	_	1.3 (1)	1.89	_
	1525	3 470	250	_	52	10.6	_	-48	1×10 ⁻⁷	_	1×10 ⁻⁶	_	0.6 (1)	1.9	_
1600 Series	16256	9 400	2 560	_	437	64.6	_	-15	3×10 ⁻¹⁴	_	2×10 ⁻¹²	_	0.2 (1)	1.92	_
	100	_	12.4	_	_	_	_	<-70	_	_	_	_	90 (121 °C)	_	-70/66
	101	_	17.4	_	_	2	_	<-70	_	_	_	_	75 (1)	_	-70/104
	102	_	38	_	_	3	29	<-63	_	_	_	_	35 (1)	_	-63/132
GPL	103	ı	82	_	_	5	92	-60	_	_	_	_	7 (1)	_	-60/154
Series	104	ı	177	_	_	8.4	111	- 51	_	_	_	1	3 (1)	_	-51/179
	105	ı	522	_	_	18	124	-36	_	_	_	1	7 (204 °C)	_	-36/204
	106	ı	822	_	_	25	134	-36	_	_	_	-	<3 (1)	_	-36/260
	107	_	1 535	_	_	42	145	-30	_	_	_	_	<1 (1)	_	-30/288

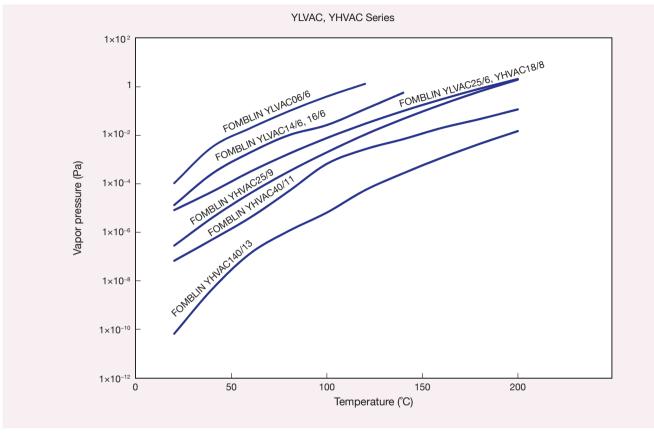
Krytox grease

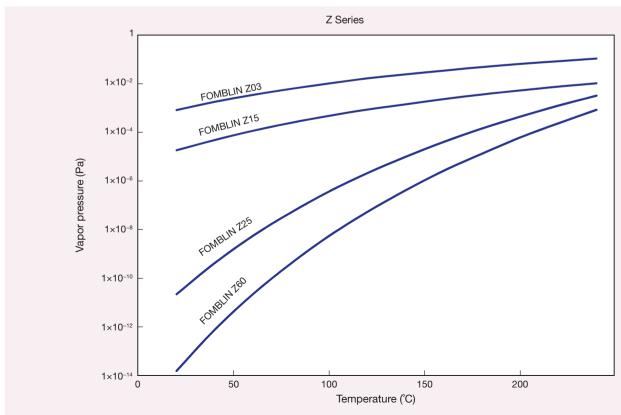
Product	Base oil	Kinematic viscosity mm²/s	Thickener	Consistency NLGI No.		oressure number) Pa	Oil separation rate wt %	Evaporation wt %	Density g/cm³	Additive
		(38 °C)		NEGINO.	38 °C	260 °C	(204 °C, 30h)	(204 °C, 6.5h)	(25 °C)	
240AZ	143AZ	24.7			4×10 ⁻⁴	1.5	6	18 (149 °C)	_	None
240AA	143AA	35			1×10 ⁻⁴	0.8	5	15 (149 °C)	_	1
240AB	143AB	86	PTFE	2	5×10 ⁻⁶	3×10 ⁻²	4	1.9 (149 °C)	_	1
240AC	143AC	270			8×10⁻8	2×10⁻³	3	4 (260 °C)	_	1
240AD	143AD	502			6×10 ⁻⁹	3×10 ⁻⁴	3	2 (260 °C)	_	1
250AC	143AC	270			8×10 ⁻⁸	2×10⁻³	3	4 (260 °C)	_	MoS ₂
280AC	143AC	270	PTFE	2	1	1	3	4 (260 °C)	_	Anti-rust agent
283AC	143AC	270	PIFE	2	1	1	3	4 (260 °C)	_	Anti-rust agent
283AD	143AD	502			6×10 ⁻⁹	3×10 ⁻⁴	3	2 (260 °C)	_	Anti-rust agent
LVP	16256	740 (40 °C)	PTFE	2	1×10 ⁻¹³ (20 °C)	1×10⁻⁵ (200 °C)	_	0.2 (121 °C)	1.94	None
GPL204	GPL104	60 (40 °C)			_	_	5	3 (121 °C)	_	None
GPL224	GPL104	60 (40 °C)	PTFE	2	_	_	5	3 (121 °C)	_	Anti-rust agent
GPL207	GPL107	450 (40 °C)	PIFE	2		_	4	<1 (204 °C)	_	None
GPL227	GPL107	450 (40 °C)			_	_	4	<1 (204 °C)	_	Anti-rust agent

Vapor pressure of Krytox oil

7. Properties of Commercially Available Fluorine Lubricants (Fomblin oil, Klübertemp / Klüberalfa Grease)

Fomblin oil (Solvay Specialty Polymers)

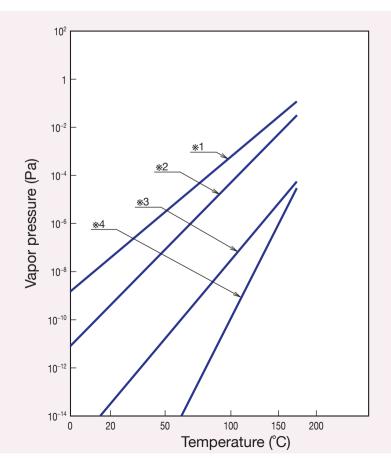

Pro	oduct	Average molecular		atic viscos mm²/s	ity	Viscosity index	Pour point	(Knudser	oressure n number) 'a	Evaporation wt %	Density g/cm³
		weight	20 °C	40 °C	100 °C	IIIUEX		20 °C	100 ℃	(Temperature, 22 hours)	(20 °C)
	Y04	1 500	38	15	3.2	60	-58	_	_	9 (120 °C)	1.87
	Y06	1 800	60	22	3.9	70	-50	_	_	6 (120 °C)	1.88
Y Series	Y25	3 200	250	80	10	108	-35	_	_	15 (204 °C)	1.90
Selles	Y45	4 100	470	147	16	117	-30	_	_	1.7 (204 °C)	1.91
	YR	6 250	1 200	345	33	135	-25	_	_	1.2 (204 °C)	1.91
	06/6	_	64	_	_	_	-50	≤1.1 × 10 ⁻⁴	≤4.0 × 10 ⁻¹	_	1.88
YLVAC	14/6	_	148	_	_	_	-45	≤1.3 × 10 ⁻⁵	≤2.7 × 10 ⁻²	_	1.89
Series	16/6	_	168	_	_	_	-45	≤2.7 × 10 ⁻⁶	≤2.7 × 10 ⁻²	_	1.90
	25/6	_	276	_	_	_	-35	≤8.0 × 10 ⁻⁶	≤8.0 × 10 ⁻³	_	1.90
	18/8	_	190	_	9	_	-42	≤2.6 × 10 ⁻⁶	≤2.6 × 10 ⁻²	_	1.89
YHVAC	25/9	_	285	_	12	_	-35	≤2.6 × 10 ⁻⁷	≤2.6 × 10 ⁻³	_	1.90
Series	40/11	_	474	_	_	_	-32	≤6.6 × 10 ⁻⁸	≤6.6 × 10 ⁻⁴	_	1.91
	140/13	_	1 508	_	_	_	-23	≤6.5 × 10 ⁻¹¹	≤6.5 × 10 ⁻⁶	_	1.92
	Z03	4 000	30	18	5.6	317	-90	_	_	6.0 (149 °C)	1.82
Z	Z15	8 000	160	92	28	334	-80	_	_	1.2 (204 °C)	1.84
Series	Z25	9 500	263	157	49	358	-75	_	_	0.4 (204 °C)	1.85
	Z60	13 000	600	355	98	360	-63	_	_	0.2 (204 °C)	1.85


Klübertemp / Klüberalfa grease (NOK Klüber)

Prod	duct	Thickener	Consistency NLGI No.	Oil separation Rate wt % (204 °C, 30h)	Evaporation wt % (204 °C, 22h)	Density g/cm³ (20 °C)	Additive	Working Temperature Range °C
	GR OT20N		2	_	_	1.90	Anti-rust agent (solid)	-50/70
Vlübortoma	GR UT18N	PTFE	2	_	_	1.90	Anti-rust agent (solid)	-30/200
Klübertemp	GR RT15N	FIFE	2	≤12	≤3	1.90	Anti-rust agent (solid)	-20/250
	GR RT2		2	≤12	≤3	1.90	Anti-rust agent (solid)	-20/250
	GR YVAC1		1	≤14	≤1	1.90	None	-20/250
Klüberalfa	GR YVAC2	PTFE	2	≤12	≤1	1.90	None	-20/250
	GR YVAC3		3	≤10	≤1	1.90	None	-20/250

Vapor pressure of Fomblin oil

8. Properties of Commercially Available Fluorine Lubricants (Barrierta, NOXLUB, Demnum)

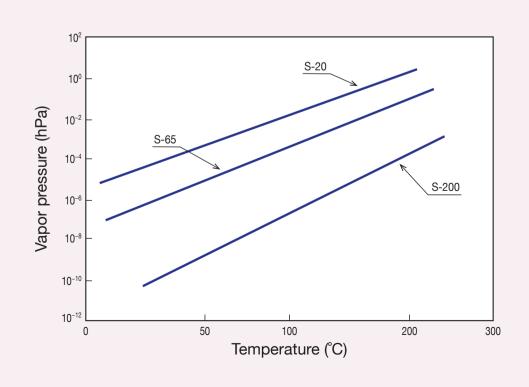

Barrierta oil (NOK Klüber)

I Series	Average molecular weight		viscosity n²/s	Viscosity index	Pour point °C	Density g/cm³ (20 °C)
	molecular weight	20 °C	40 °C	index		(20 °C)
IEL FLUID	3 500	310	98	≥100	≤–45	1.90
IMI FLUID	4 500	670	205	≥120	≤–30	1.90
IS FLUID	7 500	1 400	425	≥120	≤–30	1.91

Barrierta grease (NOK Klüber)

Product	Base oil	Kinematic viscosity mm²/s (40 °C)	Thickener	Consistency NLGI No.	Vapor pressure (Knudsen number) (20 °C)	Oil separation rate wt % (100 °C, 24h)	Evaporation wt % (99 °C, 22h)	Density g/cm³ (25 °C)	Additive
IEL	*1	95		2	6×10 ⁻⁶	_	_	1.95	Anti-rust agent
IMI	*2	180	PTFE	2	7×10 ⁻⁷	_	-	1.95	Anti-rust agent
IS	*3	390		2	2×10 ⁻⁸	_	-	1.95	Anti-rust agent
L55/2 J	-	390	PTFE	2	2×10 ⁻⁸	6.0	0.1	1.95	Anti-rust agent
IEL/V	-	65		2	5×10 ⁻⁶	5.8	0.2	1.95	Anti-rust agent
IMI/V	-	180	PTFE	2	9×10 ⁻¹⁰	5.4	0.2	1.95	Anti-rust agent
IS/V	_	415	FIFE	2	5×10 ⁻¹⁴	5.1	0.1	1.95	None
SUPER IS/V	_	415		2	5×10 ⁻¹⁴	5.1	0.1	1.95	None

Vapor pressure of Barrierta oil


NOXLUB grease (NOK Klüber)

Product		Base oil	Thickener	Consistency NLGI No.	Vapor pressure (Knudsen number) (20 °C)	Oil separation rate wt % (100 °C, 24h)	Evaporation wt % (99 °C, 22h)	Density g/cm³ (25 °C)	Additive
KF 0622	_	65		2	3×10⁻⁵	_	-	1.96	None
KF 2024	_	200	PTFE	2	3×10 ⁻⁹	-	-	1.95	None
BF 9922	*4	1 200		2	1×10 ⁻¹⁸	-	_	2	None

Demnum (Daikin)

Product	Average molecular weight	Kinematic viscosity mm²/s			Viscosity index	Pour point	Density g/cm³	
	molecular weight	20 °C	40 °C	60 °C		°C	(20 °C)	
S-20	2 700	53	25	14	150	- 75	1.86	
S-65	4 500	150	65	33	180	-65	1.87	
S-200	8 400	500	200	95	210	-53	1.89	

Vapor pressure of Demnum

Specification Inquiry for SPACEA™ Series Bearings

To request a sp	ecification inquiry	/, please fill out the following	g form and conta	act your ne	earest NSF	Coffice.			
Company na	ame			Name					
Department				Phone					
		T			I				
Regring	From NSK								
Bearing designation,	From other company								
dimensions	Dimensions	Bore diameter ×	Outside diame	ter × Wic	lth (φ	$\times\phi$	×	mm)	
Application	Type of mach	ine (example: liquid crystal cle 1. New design 2. Ex	aning equipment, c				etc.) 3. Maintenanc	e	
		1. Name of manufactur				odel: (١
	Current bearing	2. Unknown	rer. (), ivic	odei. ()
		1. Material							
	Specifications	2. Lubricant							
Problems/ Issues	Bearing life	() hours or months	e emissions particles mal noise	ns/outgassing 3. Rusting 5. Lubricant leakage 9. Poor rotation					
	Required operating life	(
	Details on problems/ issues								
	Degree of vacuum	2. Atmospheric pressu	1. Atmospheric pressure 2. Atmospheric pressure up to vacuum (degree of vacuum = Pa) 3. Vacuum (degree of vacuum = Pa)						
		Water environment	1. High-humid 4. De-ionized		2. Water 5. Other		3. Water-imr	nersed)	
Operating	Corrosion resistance	2. Corrosive liquids	Acid ()	Alkali () Other ())
environment needs		3. Corrosive gases	F-based (Br-based ()	CI-based (Other ()	
	Cleanliness		1. Particle emissions (Class:) 2. Outgassing (3. Grease-free 4. No grease leakage 5. Other (
	Temperature	Bearing temperature (°C)	Ambier	nt tempe	rature (°C)		
Operating conditions	Speed	Normal () min ⁻¹	Max () min ⁻¹		
	Bearing load	Radial (Other load information	N)	Axial	(N))	
Comments									_

NSK LTD.-HEADQUARTERS, TOKYO, JAPAN

Nissei Bldg., 1-6-3 Ohsaki, Shinagawa-ku, Tokyo 141-8560, Japan

INDUSTRIAL MACHINERY BUSINESS DIVISION-HEADQUARTERS

P: ±81-3-3779-7227 F: ±81-3-3779-7432

AUTOMOTIVE BUSINESS DIVISION-HEADQUARTERS F: +81-3-3779-7917

P: +81-3-3779-7189

Africa

South Africa:

NSK SOUTH AFRICA (PTY) LTD.

25 Galaxy Avenue, Linbro Business Park, Sandton 2146, South Africa

P: +27-011-458-3600 F: +27-011-458-3608

Asia and Oceania

Australia:

NSK AUSTRALIA PTY. LTD.

MELBOURNE 🔅 100 Logis Boulevard, Dandenong South, Victoria, 3175, Australia

P: +61-3-9765-4400 F: +61-3-9765-4466

SYDNEY Suite A315, 20 Lexington Drive, Bella Vista, New South Wales, 2153, Australia

> P: +61-2-9839-2300 F: +61-2-8824-5794

BRISBANE 1/69 Selhurst Street, Coopers Plains, Queensland 4108, Australia

P: +61-7-3347-2600 F: +61-7-3345-5376

Unit 1, 71 Tacoma Circuit, Canning Vale, Western Australia 6155, Australia PERTH

P: +61-8-9256-5000 F: +61-8-9256-1044

New Zealand:

NSK NEW ZEALAND LTD.

AUCKLAND Unit F. 70 Business Parade South, Highbrook, Business Park Auckland 2013, New Zealand

> P: +64-9-276-4992 F: +64-9-276-4082

China:

DALIAN

NSK (SHANGHAI) TRADING CO., LTD.

JIANGSU No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332)

P: +86-512-5796-3000 F: +86-512-5796-3300

NSK (CHINA) INVESTMENT CO., LTD.

No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332) JIANGSU ☆

P: +86-512-5796-3000 F: +86-512-5796-3300

BEIJING Room 1906, Beijing Fortune Bldg., No.5 Dong San Huan Bei Lu, Chao Yang District,

Beijing, China (100004)

P: +86-10-6590-8161 F: +86-10-6590-8166

TIAN JIN Unit 4604, 46/F., Metropolitan Tower, 183 Nanjing Road, Heping District,

Tianjin, China (300051)

P: +86-22-8319-5030 F: +86-22-8319-5033

Room 902-03, Changchun Hongwell International Plaza, No.3299 Renmin Street, CHANGCHUN

Changchun, Jilin, China (130061)

P: +86-431-8898-8682 F: +86-431-8898-8670

SHENYANG Room 1101, China Resources Building, No. 286 Qingnian Street,

> Heping District, Shenyang Liaoning, China (110004) P: +86-24-2334-2868 F: +86-24-2334-2058 Room 1805 Xiwang Tower, No.136 Zhongshan Road,

Zhongshan District, Dalian, Liaoning, China (116001) P: +86-411-8800-8168 F: +86-411-8800-8160

NANJING Room A1 22F, Golden Eagle International Plaza, No.89 Hanzhong Road, Nanjing,

Jiangsu, China (210029)

P: +86-25-8472-6671 F: +86-25-8472-6687

FUZHOU Room 1801-1811, B1#1A Class Office Building, Wanda Plaza, No.8 Aojiang Road,

Fuzhou, China (350009)

P: +86-591-8380-1030 F: +86-591-8380-1225

WUHAN Room 1512, No.198Yuncai Road, Office Building, Oceanwide City Square,

JiangHan, District, WuHan, China (400039) P: +86-27-8556-9630 F: +86-27-8556-9615

QINGDAO Room 802, Farglory International Plaza, No.26 Xianggang Zhong Road, Shinan District,

Qingdao, Shandong, China (266071)

P: +86-532-5568-3877 F: +86-532-5568-3876 **GUANGZHOU** Room 1011-16, Yuexiu Financial Tower, No.28 Zhujiang Road East, Zhujiang

New Town, Guangzhou, Guangdong, China (510627)

P: +86-20-3817-7800 F: +86-20-3786-4501

CHANGSHA Room 3209, Huayuan International Center, No.36, Section 2, Xiangjiang Middle

Road, Tianxin District, Changsha, Hunan, China (410002) P: +86-731-8571-3100 F: +86-731-8571-3255

LUOYANG Room 955, HUA-YANG PLAZA HOTEL, NO.88 Kaixuan W.Rd., Jian Xi District,

> Luoyang, Henan Province, China (471003) P: +86-379-6069-6188 F: +86-379-6069-6180

Room 1007, B Changan Metropolls Center, No.88 Nanguanzheng Steet, Xi'an, XI'AN

Shanxi, China (710068)

P: +86-29-8765-1896 F: +86-29-8765-1895

CHONGQING Room 612, Commercial Apartment, Athestel Hotel, No.288, Keyuan Rd.4,

Jiulongpo District, Chongqing, China (400039) P: +86-23-6806-5310 F: +86-23-6806-5292

CHENGDU Room1117, Lippo Tower, No.62 North Kehua Road, Chengdu, Sichuan, China (610041)

P: +86-28-8528-3680 F: +86-28-8528-3690

NSK CHINA SALES CO., LTD.

JIANGSU No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332)

P: +86-512-5796-3000 F: +86-512-5796-3300

NSK HONG KONG LTD.

HONG KONG $\stackrel{\iota}{\bowtie}$ Suite 705, 7th Floor, South Tower, World Finance Centre, Harbour City, T.S.T,

Kowloon, Hong Kong, China

P: +852-2739-9933 F: +852-2739-9323

SHENZHEN Room 624-626, 6/F, Kerry Center, Renminnan Road, Shenzhen, Guangdong, China

P: +86-755-25904886 F: +86-755-25904883

Taiwan:

TAIWAN NSK PRECISION CO., LTD.

10F-A6, No.168, Sec.3, Naniing East Rd., Zhongshan Dist., Taipei City 104, TAIPEI ☆

Taiwan

P: +886-2-2772-3355 F: +886-2-2772-3300

TAICHUNG 3F. -2, No. 540, Sec. 3, Taiwan Blvd., Xitun Dist., Taichung City 407, Taiwan

P: +886-4-2708-3393 F: +886-4-2708-3395

TAINAN Rm. A1, 9F., No.189, Sec. 1, Yongfu Rd., West Central Dist., Tainan City 700,

P: +886-6-215-6058 F: +886-6-215-5518

India:

NSK BEARINGS INDIA PRIVATE LTD.

CHENNAI ☆ TVH Beliciaa Towers, 2nd Floor, Block I, No.71/1, MRC Nagar Main Road, MRC

Nagar, Chennai-600 028, India

P: +91-44-2847-9600 F: +91-44-2847-9601

MUMBAI No.321, A Wing, Ahura Centre, 82, Mahakali Caves Road, Andheri (E),

Mumbai-400 093, India

P: +91-22-2838-7787

13/A, 2nd Floor, Circuit House Area, North West Layout, Road No.12, (Near Sai Baba Mandir), Sonari, Jamshedpur-831 011, Jharkhand, India

P: +91-657-2421144

GURGAON Unit No. 202, 2nd Floor, 'A' Block, Iris Tech Park, Sector - 48 (Sohna Road),

Gurgaon-122018, Haryana, India

P: +91-124-4838000

Indonesia:

JAMSHEDPLIR

PT. NSK INDONESIA JAKARTA Summitmas II, 6th Floor, Jl. Jend Sudirman Kav. 61-62, Jakarta 12190, Indonesia

P: +62-21-252-3458 F: +62-21-252-3223

Korea:

NSK KOREA CO., LTD.

Posco Center (West Wing) 9F, 440, Teheran-ro, Gangnam-gu, SEOUL

Seoul, 06194, Korea

P: +82-2-3287-0300 F: +82-2-3287-0345

Malaysia:

NSK BEARINGS (MALAYSIA) SDN. BHD.

No. 2, Jalan Pemaju, U1/15, Seksyen U1, Hicom Glenmarie Industrial Park, SHAH ALAM ☆

> 40150 Shah Alam, Selangor, Malaysia P: +60-3-7803-8859 F: +60-3-7806-5982

PRAI No.24, Jalan kikik, Taman Inderawasih, 13600 Prai, Penang, Malaysia

> P: +60-4-3902275 F: +60-4-3991830

88 Jalan Ros Merah 2/17, Taman Johor Jaya, 81100 Johor Bahru, Johor, Malaysia JOHOR BAHRLI F: +60-7-3546291

P: +60-7-3546290

IPOH No.10&10A, Jalan Industri Paloh, Kawasan Perindustrian Ringan Paloh, 30200 Ipoh, Perak, Malaysia

Philippines:

NSK REPRESENTATIVE OFFICE

MANILA 8th Floor The Salcedo Towers 169 H.V. Dela Costa St., Salcedo Villege Makati

F: +60-5-2553373

City, Philippines 1227

P: +60-5-2555000

P: +63-2-893-9543 F: +63-2-893-9173

Singapore:

NSK INTERNATIONAL (SINGAPORE) PTE LTD.

SINGAPORE 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684

P: +65-6496-8000 F: +65-6250-5845

NSK SINGAPORE (PRIVATE) LTD.

SINGAPORE 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684

P: +65-6496-8000 F: +65-6250-5845

Thailand:

NSK BEARINGS (THAILAND) CO.,LTD. BANGKOK 26 Soi Onnuch 55/1 Pravet Subdistrict, Pravet District, Bangkok 10250, Thailand

P: +66-2320-2555 F: +66-2320-2826

Vietnam:

NSK VIETNAM CO., LTD.

HANOI Techno Center, Room 204-205, Thang Long Industrial Park, Dong Anh District,

Hanoi, Vietnam

P: +84-24-3955-0159 F: +84-24-3955-0158

NSK REPRESENTATIVE OFFICE HO CHI MINH CITY Unit 609, The Landmark Building, 5B Ton Duc Thang Street, District 1,

Ho Chi Minh City, Vietnam

P: +84-28-3822-7907 F: +84-28-3822-7910

Europe

United Kingdom:

NSK EUROPE LTD. (EUROPEAN HEADQUARTERS)

MAIDENHEAD Belmont Place, Belmont Road, Maidenhead, Berkshire SL6 6TB, U.K.

P: +44-1628-509-800 F: +44-1628-509-808

NSK UK LTD.

NEWARK Northern Road, Newark, Nottinghamshire NG24 2JF, U.K.

P: +44-1636-605-123 F: +44-1636-605-000

France:

NSK FRANCE S.A.S.

PARIS Quartier de l'Europe, 2 Rue Georges Guynemer, 78283 Guyancourt, France

P: +33-1-30-57-39-39 F: +33-1-30-57-00-01

Germany:

NSK DEUTSCHLAND GMBH

DUSSELDORF 🔅 Harkortstrasse 15, D-40880 Ratingen, Germany

P: +49-2102-4810 F: +49-2102-4812-290

STUTTGART Liebknechtstrasse 33, D-70565 Stuttgart-Vaihingen, Germany

P: +49-711-79082-0 F: +49-711-79082-289

WOLFSBURG Tischlerstrasse 3, D-38440 Wolfsburg, Germany

P: +49-5361-27647-10 F: +49-5361-27647-70

Italy:

NSK ITALIA S.P.A.

MILANO Via Garibaldi 215, Garbagnate Milanese (Milano) 20024, Italy

P: +39-299-5191 F: +39-299-025778

Netherlands:

NSK EUROPEAN DISTRIBUTION CENTRE B.V.

TILBURG Brakman 54, 5047 SW Tilburg, Netherlands P: +31-13-4647647 F: +31-13-4641082

Poland:

NSK REPRESENTATIVE OFFICE

WARSAW UI. Migdalowa 4/73, 02-796, Warsaw, Poland P: +48-22-645-1525 F: +48-22-645-1529

Spain:

NSK SPAIN S.A.

BARCELONA C/Tarragona, 161 Cuerpo Bajo, 2a Planta, 08014, Barcelona, Spain

P: +34-93-289-2763 F: +34-93-433-5776

Turkey:

NSK RULMANLARI ORTA DOGU TIC. LTD. STI.

ISTANBUL Cevizli Mahallesi. D-100 Güney Yanyolu, Kuriş Kule İş Merkezi No:2 Kat:4, P.K.:

34846, Cevizli-Kartal-Istanbul, Turkey P: +90-216-5000-675 F: +90-216-5000-676

United Arab Emirates:

NSK BEARINGS GULF TRADING CO.

DUBAI JAFZA View 19. Floor 24 Office LB192402/3, PO Box 262163, Downtown Jebel Ali.

Dubai, U.A.E

P: +971-(0)4-804-8200 F: +971-(0)4-884-7227

North and South America

United States of America:

NSK AMERICAS, INC. (AMERICAN HEADQUARTERS)

ANN ARBOR 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.

P: +1-734-913-7500 F: +1-734-913-7511

NSK CORPORATION

ANN ARBOR 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.

P: +1-734-913-7500 F: +1-734-913-7511

NSK PRECISION AMERICA, INC.

FRANKLIN \$\frac{1}{2}\$ 3450 Bearing Drive, Franklin, Indiana 46131, U.S.A.

P: +1-317-738-5000 F: +1-317-738-5050

SAN JOSE 780 Montague Expressway, Suite 505, San Jose, California, 95131, U.S.A.

P: +1-408-944-9400 F: +1-408-944-9405

NSK LATIN AMERICA, INC.

MIAMI 11601 NW 107 Street, Suite 200, Miami Florida, 33178, U.S.A.

P: +1-305-477-0605 F: +1-305-477-0377

Canada:

NSK CANADA INC.

TORONTO 🕸 317 Rutherford Road South, Brampton, Ontario, L6W 3R5, Canada

P: +1-888-603-7667 F: +1-905-890-1938

MONTREAL 2150-32E Avenue Lachine, Quebec, Canada H8T 3H7

P: +1-514-633-1220 F: +1-800-800-2788

Argentina:

NSK ARGENTINA SRL

BUENOS AIRES Garcia del Rio 2477 Piso 7 Oficina "A" (1429) Buenos Aires-Argentina

P: +54-11-4704-5100 F: +54-11-4704-0033

Brazil:

NSK BRASIL LTDA.

SUZANO 🔅 Av. Vereador João Batista Fitipaldi, 66, Vila Maluf, Suzano-SP-Brazil-CEP 08685-000

P: +55-11-4744-2500

JOINVILLE Rua Blumenau, 178, sala 910, Centro, Joinville-SC-Brazil-CEP 89204-250

P: +55-47-3422-2239

Peru: NSK PERU S.A.C.

LIMA Calle Teniente Enrique Palacios 360 Oficina 311 Miraflores, Lima, Peru

P: +51-493-4385

Mexico:

NSK RODAMIENTOS MEXICANA, S.A. DE C.V.

SILAO, GUANAJUATO Circuito Mexiamora Oriente No. 331, Parque Industrial Santa Fe I, Puerto

Interior. Silao, Guanajuato, Mexico. C.P. 36275 P: +52-472-500-9500 F: +52-472-103-9403

<As of August 2021>

For the latest information, please refer to the NSK website.

www.nsk.com

